Deciphering the multifaceted role of double-stranded RNA sensor protein kinase R: pathophysiological function beyond the antiviral response.

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Biology Pub Date : 2025-12-01 Epub Date: 2025-05-30 DOI:10.1080/15476286.2025.2512610
Jiyoon Chung, Yerim Lee, Jimin Yoon, Yoosik Kim
{"title":"Deciphering the multifaceted role of double-stranded RNA sensor protein kinase R: pathophysiological function beyond the antiviral response.","authors":"Jiyoon Chung, Yerim Lee, Jimin Yoon, Yoosik Kim","doi":"10.1080/15476286.2025.2512610","DOIUrl":null,"url":null,"abstract":"<p><p>Protein kinase R (PKR) is a serine/threonine kinase that recognizes double-stranded RNAs (dsRNAs) to initiate innate immune signalling during viral infection. PKR dimerizes on long dsRNAs and undergoes autophosphorylation. Phosphorylated/Activated PKR then catalyses the phosphorylation of numerous substrates to control global translation, inflammatory response, and cell signalling pathways. While primarily known for its antiviral role, emerging evidence suggests that PKR can play multifaceted roles in uninfected cells by interacting with cellular dsRNAs and protein regulators. The misactivation of PKR in uninfected cells is associated with many degenerative and inflammatory diseases. Even in healthy cells, PKR can affect gene expression by controlling mRNA splicing and gene-specific translation under stress. In addition, PKR can modulate cell cycle progression and promote cellular differentiation in several tissue types. This review explores PKR function in various pathological and physiological contexts in the absence of viral stimuli. By elucidating these diverse functions, we aim to highlight the perspectives in cellular dsRNA research and the therapeutic implications of targeting PKR, stimulating further research into this versatile and essential RNA-dependent kinase.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"22 1","pages":"1-14"},"PeriodicalIF":3.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12128661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2025.2512610","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein kinase R (PKR) is a serine/threonine kinase that recognizes double-stranded RNAs (dsRNAs) to initiate innate immune signalling during viral infection. PKR dimerizes on long dsRNAs and undergoes autophosphorylation. Phosphorylated/Activated PKR then catalyses the phosphorylation of numerous substrates to control global translation, inflammatory response, and cell signalling pathways. While primarily known for its antiviral role, emerging evidence suggests that PKR can play multifaceted roles in uninfected cells by interacting with cellular dsRNAs and protein regulators. The misactivation of PKR in uninfected cells is associated with many degenerative and inflammatory diseases. Even in healthy cells, PKR can affect gene expression by controlling mRNA splicing and gene-specific translation under stress. In addition, PKR can modulate cell cycle progression and promote cellular differentiation in several tissue types. This review explores PKR function in various pathological and physiological contexts in the absence of viral stimuli. By elucidating these diverse functions, we aim to highlight the perspectives in cellular dsRNA research and the therapeutic implications of targeting PKR, stimulating further research into this versatile and essential RNA-dependent kinase.

解读双链RNA传感器蛋白激酶R的多方面作用:抗病毒反应之外的病理生理功能。
蛋白激酶R (PKR)是一种丝氨酸/苏氨酸激酶,可识别双链rna (dsRNAs),在病毒感染期间启动先天免疫信号。PKR在长dsrna上二聚并进行自磷酸化。磷酸化/活化的PKR随后催化许多底物的磷酸化,以控制全局翻译、炎症反应和细胞信号通路。虽然主要以其抗病毒作用而闻名,但新出现的证据表明,PKR可以通过与细胞dsrna和蛋白质调节因子相互作用,在未感染细胞中发挥多方面的作用。未感染细胞中PKR的失活与许多退行性和炎症性疾病有关。即使在健康细胞中,PKR也可以通过控制mRNA剪接和应激下的基因特异性翻译来影响基因表达。此外,PKR可以调节细胞周期进程,促进多种组织类型的细胞分化。这篇综述探讨了PKR在缺乏病毒刺激的各种病理和生理背景下的功能。通过阐明这些不同的功能,我们的目标是强调细胞dsRNA研究的前景和靶向PKR的治疗意义,刺激对这种多功能和必需的rna依赖性激酶的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RNA Biology
RNA Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
82
审稿时长
1 months
期刊介绍: RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research. RNA Biology brings together a multidisciplinary community of scientists working in the areas of: Transcription and splicing Post-transcriptional regulation of gene expression Non-coding RNAs RNA localization Translation and catalysis by RNA Structural biology Bioinformatics RNA in disease and therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信