Reviews of Modern Physics最新文献

筛选
英文 中文
Nobel Lecture: Genesis and applications of attosecond pulse trains 诺贝尔讲座:阿秒脉冲串的起源与应用
IF 44.1 1区 物理与天体物理
Reviews of Modern Physics Pub Date : 2024-08-28 DOI: 10.1103/revmodphys.96.030501
Pierre Agostini
{"title":"Nobel Lecture: Genesis and applications of attosecond pulse trains","authors":"Pierre Agostini","doi":"10.1103/revmodphys.96.030501","DOIUrl":"https://doi.org/10.1103/revmodphys.96.030501","url":null,"abstract":"<span>DOI:</span><span>https://doi.org/10.1103/RevModPhys.96.030501</span>","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":"25 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colloquium: Eigenvector continuation and projection-based emulators 学术讨论会:特征向量延续和基于投影的仿真器
IF 44.1 1区 物理与天体物理
Reviews of Modern Physics Pub Date : 2024-08-14 DOI: 10.1103/revmodphys.96.031002
Thomas Duguet, Andreas Ekström, Richard J. Furnstahl, Sebastian König, Dean Lee
{"title":"Colloquium: Eigenvector continuation and projection-based emulators","authors":"Thomas Duguet, Andreas Ekström, Richard J. Furnstahl, Sebastian König, Dean Lee","doi":"10.1103/revmodphys.96.031002","DOIUrl":"https://doi.org/10.1103/revmodphys.96.031002","url":null,"abstract":"Eigenvector continuation is a computational method for parametric eigenvalue problems that uses subspace projection with a basis derived from eigenvector snapshots from different parameter sets. It is part of a broader class of subspace-projection techniques called reduced-basis methods. In this Colloquium, the development, theory, and applications of eigenvector continuation and projection-based emulators are presented. The basic concepts are introduced, the underlying theory and convergence properties are discussed, and recent applications for quantum systems and future prospects are presented.","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":"6 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultimate Rayleigh-Bénard turbulence 终极瑞利-贝纳德湍流
IF 44.1 1区 物理与天体物理
Reviews of Modern Physics Pub Date : 2024-08-06 DOI: 10.1103/revmodphys.96.035001
Detlef Lohse, Olga Shishkina
{"title":"Ultimate Rayleigh-Bénard turbulence","authors":"Detlef Lohse, Olga Shishkina","doi":"10.1103/revmodphys.96.035001","DOIUrl":"https://doi.org/10.1103/revmodphys.96.035001","url":null,"abstract":"Thermally driven turbulent flows are omnipresent in nature and technology. A good understanding of the physical principles governing such flows is key for numerous problems in oceanography, climatology, geophysics, and astrophysics for problems involving energy conversion, heating and cooling of buildings and rooms, and process technology. In the physics community, the most popular system to study wall-bounded thermally driven turbulence has been Rayleigh-Bénard flow, i.e., the flow in a box heated from below and cooled from above. The dimensionless control parameters are the Rayleigh number Ra (the dimensionless heating strength), the Prandtl number Pr (the ratio of kinematic viscosity to thermal diffusivity), and the aspect ratio <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Γ</mi></math> of the container. The key response parameters are the Nusselt number Nu (the dimensionless heat flux from the bottom to the top) and the Reynolds number Re (the dimensionless strength of the turbulent flow). While there is good agreement and understanding of the dependences <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">N</mi><mi mathvariant=\"normal\">u</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">R</mi><mi mathvariant=\"normal\">a</mi><mo>,</mo><mi mathvariant=\"normal\">P</mi><mi mathvariant=\"normal\">r</mi><mo>,</mo><mi mathvariant=\"normal\">Γ</mi><mo stretchy=\"false\">)</mo></mrow></math> up to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">R</mi><mi mathvariant=\"normal\">a</mi><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>11</mn></mrow></msup></mrow></math> (the “classical regime”), for even larger Ra in the so-called ultimate regime of Rayleigh-Bénard convection the experimental results and their interpretations are more diverse. The transition of the flow to this ultimate regime, which is characterized by strongly enhanced heat transfer, is due to the transition of laminar-type flow in the boundary layers to turbulent-type flow. Understanding this transition is of the utmost importance for extrapolating the heat transfer to large or strongly thermally driven systems. Here the theoretical results on this transition to the ultimate regime are reviewed and an attempt is made to reconcile the various experimental and numerical results. The transition toward the ultimate regime is interpreted as a non-normal–nonlinear and thus subcritical transition. Experimental and numerical strategies are suggested that can help to further illuminate the transition to the ultimate regime and the ultimate regime itself, for which a modified model for the scaling laws in its various subregimes is proposed. Similar transitions in related wall-bounded turbulent flows such as turbulent convection with centrifugal buoyancy and Taylor-Couette turbulence are also discussed.","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":"100 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colloquium: Quantum batteries 学术讨论会:量子电池
IF 44.1 1区 物理与天体物理
Reviews of Modern Physics Pub Date : 2024-07-09 DOI: 10.1103/revmodphys.96.031001
Francesco Campaioli, Stefano Gherardini, James Q. Quach, Marco Polini, Gian Marcello Andolina
{"title":"Colloquium: Quantum batteries","authors":"Francesco Campaioli, Stefano Gherardini, James Q. Quach, Marco Polini, Gian Marcello Andolina","doi":"10.1103/revmodphys.96.031001","DOIUrl":"https://doi.org/10.1103/revmodphys.96.031001","url":null,"abstract":"Recent years have witnessed an explosion of interest in quantum devices for the production, storage, and transfer of energy. This Colloquium concentrates on the field of quantum energy storage by reviewing recent theoretical and experimental progress in quantum batteries. Provided first is a theoretical background discussing the advantages that quantum batteries offer with respect to their classical analogs. The existing quantum many-body battery models are then reviewed and a thorough discussion of important issues related to their “open nature” is presented. The Colloquium concludes with a discussion of promising experimental implementations, preliminary results available in the literature, and perspectives.","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":"45 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141566011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalysis in quantum information theory 量子信息论中的催化作用
IF 44.1 1区 物理与天体物理
Reviews of Modern Physics Pub Date : 2024-06-27 DOI: 10.1103/revmodphys.96.025005
Patryk Lipka-Bartosik, Henrik Wilming, Nelly H. Y. Ng
{"title":"Catalysis in quantum information theory","authors":"Patryk Lipka-Bartosik, Henrik Wilming, Nelly H. Y. Ng","doi":"10.1103/revmodphys.96.025005","DOIUrl":"https://doi.org/10.1103/revmodphys.96.025005","url":null,"abstract":"Catalysts open up new reaction pathways that can speed up chemical reactions while not consuming the catalyst. A similar phenomenon has been discovered in quantum information science, where physical transformations become possible by utilizing a quantum degree of freedom that returns to its initial state at the end of the process. In this review, a comprehensive overview of the concept of catalysis in quantum information science is presented and its applications in various physical contexts are discussed.","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":"29 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutrinos from dense environments: Flavor mechanisms, theoretical approaches, observations, and new directions 来自高密度环境的中微子:味道机制、理论方法、观测和新方向
IF 44.1 1区 物理与天体物理
Reviews of Modern Physics Pub Date : 2024-06-24 DOI: 10.1103/revmodphys.96.025004
M. Cristina Volpe
{"title":"Neutrinos from dense environments: Flavor mechanisms, theoretical approaches, observations, and new directions","authors":"M. Cristina Volpe","doi":"10.1103/revmodphys.96.025004","DOIUrl":"https://doi.org/10.1103/revmodphys.96.025004","url":null,"abstract":"Neutrino masses and mixings produce vacuum oscillations, an established quantum mechanical phenomenon. In matter, the Mikheev-Smirnov-Wolfenstein effect, due to neutrino interactions with the background particles, triggers resonant flavor modification. In dense environments, such as core-collapse supernovae and compact mergers, sizable neutrino-neutrino interactions, shock waves, and turbulence impact the neutrino flavor content under a variety of phenomena. Theoretical approaches of neutrino propagation range from the mean-field approximation to the full quantum kinetic equations. Interesting connections have been uncovered between weakly interacting dense neutrino gases and other many-body systems and domains, from condensed matter and nuclear physics to quantum computing. Besides the intrinsic theoretical interest, establishing how neutrinos change flavor contributes to answering the long-standing open questions of how massive stars explode and of the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math>-process sites. It is also important for future observations of core-collapse supernova neutrinos and of the diffuse supernova neutrino background that should be discovered in the foreseeable future.","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":"78 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141448113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluorescence microscopy: A statistics-optics perspective 荧光显微镜:统计-光学视角
IF 44.1 1区 物理与天体物理
Reviews of Modern Physics Pub Date : 2024-06-05 DOI: 10.1103/revmodphys.96.025003
Mohamadreza Fazel, Kristin S. Grussmayer, Boris Ferdman, Aleksandra Radenovic, Yoav Shechtman, Jörg Enderlein, Steve Pressé
{"title":"Fluorescence microscopy: A statistics-optics perspective","authors":"Mohamadreza Fazel, Kristin S. Grussmayer, Boris Ferdman, Aleksandra Radenovic, Yoav Shechtman, Jörg Enderlein, Steve Pressé","doi":"10.1103/revmodphys.96.025003","DOIUrl":"https://doi.org/10.1103/revmodphys.96.025003","url":null,"abstract":"Fundamental properties of light unavoidably impose features on images collected using fluorescence microscopes. Accounting for these features is often critical in quantitatively interpreting microscopy images, especially those gathering information at scales on par with or smaller than light’s emission wavelength. Here the optics responsible for generating fluorescent images, fluorophore properties, and microscopy modalities leveraging properties of both light and fluorophores, in addition to the necessarily probabilistic modeling tools imposed by the stochastic nature of light and measurement, are reviewed.","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":"12 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colloquium: Spin-orbit effects in superconducting hybrid structures 学术讨论会:超导混合结构中的自旋轨道效应
IF 44.1 1区 物理与天体物理
Reviews of Modern Physics Pub Date : 2024-05-28 DOI: 10.1103/revmodphys.96.021003
Morten Amundsen, Jacob Linder, Jason W. A. Robinson, Igor Žutić, Niladri Banerjee
{"title":"Colloquium: Spin-orbit effects in superconducting hybrid structures","authors":"Morten Amundsen, Jacob Linder, Jason W. A. Robinson, Igor Žutić, Niladri Banerjee","doi":"10.1103/revmodphys.96.021003","DOIUrl":"https://doi.org/10.1103/revmodphys.96.021003","url":null,"abstract":"Spin-orbit coupling (SOC) relates to the interaction between an electron’s motion and its spin and is ubiquitous in solid-state systems. Although the effect of SOC in normal-state phenomena has been extensively studied, its role in superconducting hybrid structures and devices elicits many unexplored questions. In conjunction with broken symmetries and material inhomogeneities within superconducting hybrid structures, SOC may have contributions beyond its effects in homogeneous materials. Notably, even with well-established magnetic or nonmagnetic materials and conventional <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>s</mi></math>-wave spin-singlet superconductors, SOC leads to emergent phenomena including equal-spin-triplet pairing and topological superconductivity (hosting Majorana states), a modified current-phase relationship in Josephson junctions, and nonreciprocal transport, including superconducting diode effects. SOC is also responsible for transforming quasiparticles in superconducting structures, which enhances the spin Hall effect and changes the spin dynamics. Taken together, SOC in superconducting hybrid structures and the potential for electric tuning of the SOC strength create interesting possibilities to advance superconducting spintronic devices for energy-efficient computing and enable topological fault-tolerant quantum computing. By providing a description of experimental techniques and theoretical methods to study SOC, this Colloquium describes the current understanding of resulting phenomena in superconducting structures and offers a framework to select and design a growing class of materials systems where SOC plays an important role.","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":"68 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141165318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
When superconductivity crosses over: From BCS to BEC 当超导电性发生交叉:从 BCS 到 BEC
IF 44.1 1区 物理与天体物理
Reviews of Modern Physics Pub Date : 2024-05-23 DOI: 10.1103/revmodphys.96.025002
Qijin Chen, Zhiqiang Wang, Rufus Boyack, Shuolong Yang, K. Levin
{"title":"When superconductivity crosses over: From BCS to BEC","authors":"Qijin Chen, Zhiqiang Wang, Rufus Boyack, Shuolong Yang, K. Levin","doi":"10.1103/revmodphys.96.025002","DOIUrl":"https://doi.org/10.1103/revmodphys.96.025002","url":null,"abstract":"New developments in superconductivity, particularly through unexpected and often surprising forms of superconducting materials, continue to excite the community and stimulate theory. It is now becoming clear that there are two distinct platforms for superconductivity: natural and synthetic materials. The study of these artificial materials has greatly expanded in the past decade or so, with the discoveries of new forms of superfluidity in artificial heterostructures and the exploitation of proximitization. Natural superconductors continue to surprise through Fe-based pnictides and chalcogenides, and nickelates as well as others. This review presents a two-pronged investigation into such superconductors, with an emphasis on those that have come to be understood to belong somewhere between the Bardeen-Cooper-Schrieffer (BCS) and Bose-Einstein condensation (BEC) regimes. The nature of this “crossover” superconductivity, which is to be distinguished from crossover superfluidity in atomic Fermi gases, is a focus here. Multiple ways of promoting a system out of the BCS and into the BCS-BEC crossover regime are addressed in the context of concrete experimental realizations. These involve natural materials, such as organic conductors, as well as artificial, mostly two-dimensional materials, such as magic-angle twisted bilayer and trilayer graphene, or gate-controlled devices, as well as one-layer and interfacial superconducting films. Such developments should be viewed as a celebration of BCS theory, as it is now clear that, even though this theory was initially implemented with the special case of weak correlations in mind, it can be extended in a natural way to treat the case of these more exotic strongly correlated superconductors.","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":"18 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141091771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Coauthor! Coauthor! 社论:共同作者合著者
IF 44.1 1区 物理与天体物理
Reviews of Modern Physics Pub Date : 2024-05-21 DOI: 10.1103/revmodphys.96.020001
Randall D. Kamien, Daniel Ucko
{"title":"Editorial: Coauthor! Coauthor!","authors":"Randall D. Kamien, Daniel Ucko","doi":"10.1103/revmodphys.96.020001","DOIUrl":"https://doi.org/10.1103/revmodphys.96.020001","url":null,"abstract":"<span>DOI:</span><span>https://doi.org/10.1103/RevModPhys.96.020001</span>","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":"19 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141079159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信