Vajir Malek, Sachin V Suryavanshi, Nisha Sharma, Yogesh A Kulkarni, Shrikant R Mulay, Anil Bhanudas Gaikwad
{"title":"Potential of Renin-Angiotensin-Aldosterone System Modulations in Diabetic Kidney Disease: Old Players to New Hope!","authors":"Vajir Malek, Sachin V Suryavanshi, Nisha Sharma, Yogesh A Kulkarni, Shrikant R Mulay, Anil Bhanudas Gaikwad","doi":"10.1007/112_2020_50","DOIUrl":"https://doi.org/10.1007/112_2020_50","url":null,"abstract":"<p><p>Due to a tragic increase in the incidences of diabetes globally, diabetic kidney disease (DKD) has emerged as one of the leading causes of end-stage renal diseases (ESRD). Hyperglycaemia-mediated overactivation of the renin-angiotensin-aldosterone system (RAAS) is key to the development and progression of DKD. Consequently, RAAS inhibition by angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs) is the first-line therapy for the clinical management of DKD. However, numerous clinical and preclinical evidences suggested that RAAS inhibition can only halt the progression of the DKD to a certain extent, and they are inadequate to cure DKD completely. Recent studies have improved understanding of the complexity of the RAAS. It consists of two counter-regulatory arms, the deleterious pressor arm (ACE/angiotensin II/AT1 receptor axis) and the beneficial depressor arm (ACE2/angiotensin-(1-7)/Mas receptor axis). These advances have paved the way for the development of new therapies targeting the RAAS for better treatment of DKD. In this review, we aimed to summarise the involvement of the depressor arm of the RAAS in DKD. Moreover, in modern drug discovery and development, an advance approach is the bispecific therapeutics, targeting two independent signalling pathways. Here, we discuss available reports of these bispecific drugs involving the RAAS as well as propose potential treatments based on neurohormonal balance as credible therapeutic strategies for DKD.</p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":"179 ","pages":"31-71"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/112_2020_50","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38424971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ines Böhme, Roland Schönherr, Jürgen Eberle, Anja Katrin Bosserhoff
{"title":"Membrane Transporters and Channels in Melanoma.","authors":"Ines Böhme, Roland Schönherr, Jürgen Eberle, Anja Katrin Bosserhoff","doi":"10.1007/112_2020_17","DOIUrl":"https://doi.org/10.1007/112_2020_17","url":null,"abstract":"<p><p>Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on \"Transportome Malfunctions in the Cancer Spectrum,\" a comparison between melanoma and these tumors will be possible.</p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":"181 ","pages":"269-374"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/112_2020_17","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38216118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ion Channel Profiling in Prostate Cancer: Toward Cell Population-Specific Screening.","authors":"Valerio Farfariello, Natalia Prevarskaya, Dimitra Gkika","doi":"10.1007/112_2020_22","DOIUrl":"https://doi.org/10.1007/112_2020_22","url":null,"abstract":"<p><p>In the last three decades, a growing number of studies have implicated ion channels in all essential processes of prostate carcinogenesis, including cell proliferation, apoptosis, migration, and angiogenesis. The changes in the expression of individual ion channels show a specific profile, making these proteins promising clinical biomarkers that may enable better molecular subtyping of the disease and lead to more rapid and accurate clinical decision-making. Expression profiles and channel function are mainly based on the tumoral tissue itself, in this case, the epithelial cancer cell population. To date, little data on the ion channel profile of the cancerous prostate stroma are available, even though tumor interactions with the microenvironment are crucial in carcinogenesis and each distinct population plays a specific role in tumor progression. In this review, we describe ion channel expression profiles specific for the distinct cell population of the tumor microenvironment (stromal, endothelial, neuronal, and neuroendocrine cell populations) and the technical approaches used for efficient separation and screening of these cell populations.</p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":"181 ","pages":"39-56"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/112_2020_22","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38214150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of Histone Deacetylases in Monocyte Function in Health and Chronic Inflammatory Diseases.","authors":"Rosa María Tordera, María Cortés-Erice","doi":"10.1007/112_2021_59","DOIUrl":"https://doi.org/10.1007/112_2021_59","url":null,"abstract":"<p><p>Histone deacetylases (HDACs) are a family of 18 members that participate in the epigenetic regulation of gene expression. In addition to histones, some HDACs also deacetylate transcription factors and specific cytoplasmic proteins.Monocytes, as part of the innate immune system, maintain tissue homeostasis and help fight infections and cancer. In these cells, HDACs are involved in multiple processes including proliferation, migration, differentiation, inflammatory response, infections, and tumorigenesis. Here, a systematic description of the role that most HDACs play in these functions is reviewed. Specifically, some HDACs induce a pro-inflammatory response and play major roles in host defense. Conversely, other HDACs reprogram monocytes and macrophages towards an immunosuppressive phenotype. The right balance between both types helps monocytes to respond correctly to the different physiological/pathological stimuli. However, aberrant expressions or activities of specific HDACs are associated with autoimmune diseases along with other chronic inflammatory diseases, infections, or cancer.This paper critically reviews the interesting and extensive knowledge regarding the role of some HDACs in these pathologies. It also shows that as yet, very little progress has been made toward the goal of finding effective HDAC-targeted therapies. However, given their obvious potential, we conclude that it is worth the effort to develop monocyte-specific drugs that selectively target HDAC subtypes with the aim of finding effective treatments for diseases in which our innate immune system is involved.</p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":"180 ","pages":"1-47"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/112_2021_59","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38970134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Placenta as a Target for Alcohol During Pregnancy: The Close Relation with IGFs Signaling Pathway.","authors":"Irene Martín-Estal, Inma Castilla-Cortázar, Fabiola Castorena-Torres","doi":"10.1007/112_2021_58","DOIUrl":"https://doi.org/10.1007/112_2021_58","url":null,"abstract":"<p><p>Alcohol is one of the most consumed drugs in the world, even during pregnancy. Its use is a risk factor for developing adverse outcomes, e.g. fetal death, miscarriage, fetal growth restriction, and premature birth, also resulting in fetal alcohol spectrum disorders. Ethanol metabolism induces an oxidative environment that promotes the oxidation of lipids and proteins, triggers DNA damage, and advocates mitochondrial dysfunction, all of them leading to apoptosis and cellular injury. Several organs are altered due to this harmful behavior, the brain being one of the most affected. Throughout pregnancy, the human placenta is one of the most important organs for women's health and fetal development, as it secretes numerous hormones necessary for a suitable intrauterine environment. However, our understanding of the human placenta is very limited and even more restricted is the knowledge of the impact of toxic substances in its development and fetal growth. So, could ethanol consumption during this period have wounding effects in the placenta, compromising proper fetal organ development? Several studies have demonstrated that alcohol impairs various signaling cascades within G protein-coupled receptors and tyrosine kinase receptors, mainly through its action on insulin and insulin-like growth factor 1 (IGF-1) signaling pathway. This last cascade is involved in cell proliferation, migration, and differentiation and in placentation. This review tries to examine the current knowledge and gaps in our existing understanding of the ethanol effects in insulin/IGFs signaling pathway, which can explain the mechanism to elucidate the adverse actions of ethanol in the maternal-fetal interface of mammals.</p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":"180 ","pages":"119-153"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/112_2021_58","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39017576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saeed Mohammadian Haftcheshmeh, Arezou Khosrojerdi, Ali Aliabadi, Shadi Lotfi, Asadollah Mohammadi, Amir Abbas Momtazi-Borojeni
{"title":"Immunomodulatory Effects of Curcumin in Rheumatoid Arthritis: Evidence from Molecular Mechanisms to Clinical Outcomes.","authors":"Saeed Mohammadian Haftcheshmeh, Arezou Khosrojerdi, Ali Aliabadi, Shadi Lotfi, Asadollah Mohammadi, Amir Abbas Momtazi-Borojeni","doi":"10.1007/112_2020_54","DOIUrl":"https://doi.org/10.1007/112_2020_54","url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disorder characterized by the destruction of the joint and bone resorption. The production of pro-inflammatory cytokines and chemokines, dysregulated functions of three important subtypes of T helper (T<sub>H</sub>) cells including T<sub>H</sub>1, T<sub>H</sub>17, and regulator T (Treg) cells are major causes of the initiation and development of RA. Moreover, B cells as a source of the production of several autoantibodies play key roles in the pathogenesis of RA. The last decades have seen increasingly rapid advances in the field of immunopharmacology using natural origin compounds for the management of various inflammatory diseases. Curcumin, a main active polyphenol compound isolated from turmeric, curcuma longa, possesses a wide range of pharmacologic properties for the treatment of several diseases. This review comprehensively will assess beneficial immunomodulatory effects of curcumin on the production of pro-inflammatory cytokines and also dysregulated functions of immune cells including T<sub>H</sub>1, T<sub>H</sub>17, Treg, and B cells in RA. We also seek the clinical efficacy of curcumin for the treatment of RA in several recent clinical trials. In conclusion, curcumin has been found to ameliorate RA complications through modulating inflammatory and autoreactive responses in immune cells and synovial fibroblast cells via inhibiting the expression or function of pro-inflammatory mediators, such as nuclear factor-κB (NF-κB), activated protein-1 (AP-1), and mitogen-activated protein kinases (MAPKs). Of note, curcumin treatment without any adverse effects can attenuate the clinical symptoms of RA patients and, therefore, has therapeutic potential for the treatment of the diseases.</p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":"179 ","pages":"1-29"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/112_2020_54","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38786207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Halima Ouadid-Ahidouch, Hamid Morjani, Julie Schnipper, Alban Girault, Ahmed Ahidouch
{"title":"Effects of the Tumor Environment on Ion Channels: Implication for Breast Cancer Progression.","authors":"Halima Ouadid-Ahidouch, Hamid Morjani, Julie Schnipper, Alban Girault, Ahmed Ahidouch","doi":"10.1007/112_2020_19","DOIUrl":"https://doi.org/10.1007/112_2020_19","url":null,"abstract":"<p><p>In recent years, it has been shown that breast cancer consists not only of neoplastic cells, but also of significant alterations in the surrounding stroma or tumor microenvironment. These alterations are now recognized as a critical element for breast cancer development and progression, as well as potential therapeutic targets. Furthermore, there is no doubt that ion channels are deregulated in breast cancer and some of which are prognostic markers of clinical outcome. Their dysregulation is also associated with aberrant signaling pathways. The number of published data on ion channels modifications by the microenvironment has significantly increased last years. Here, we summarize the state of the art on the cross talk between the tumor microenvironment and ion channels, in particular collagen 1, EGF, TGF-β, ATP, hypoxia, and pH, on the development and progression of breast cancer.</p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":"181 ","pages":"1-38"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/112_2020_19","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38234564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer.","authors":"Christian Stock","doi":"10.1007/112_2020_41","DOIUrl":"https://doi.org/10.1007/112_2020_41","url":null,"abstract":"<p><p>Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca<sup>2+</sup>, K<sup>+</sup>, Na<sup>+</sup>, and Cl<sup>-</sup> channels over divalent metal transporters, Na<sup>+</sup> or Cl<sup>-</sup> coupled Ca<sup>2+</sup>, HCO<sub>3</sub><sup>-</sup> and H<sup>+</sup> exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca<sup>2+</sup>, Akt/NF-κB, and Ca<sup>2+</sup>- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.</p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":"181 ","pages":"129-222"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/112_2020_41","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38335962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ion Channels in Lung Cancer.","authors":"Etmar Bulk, Luca Matteo Todesca, Albrecht Schwab","doi":"10.1007/112_2020_29","DOIUrl":"https://doi.org/10.1007/112_2020_29","url":null,"abstract":"<p><p>Ion channels are a major class of membrane proteins that play central roles in signaling within and among cells, as well as in the coupling of extracellular events with cellular responses. Dysregulated ion channel activity plays a causative role in many diseases including cancer. Here, we will review their role in lung cancer. Lung cancer is one of the most frequently diagnosed cancers, and it causes the highest number of deaths of all cancer types. The overall 5-year survival rate of lung cancer patients is only 19% and decreases to 5% when patients are diagnosed with stage IV. Thus, new therapeutical strategies are urgently needed. The important contribution of ion channels to the progression of various types of cancer has been firmly established so that ion channel-based therapeutic concepts are currently developed. Thus far, the knowledge on ion channel function in lung cancer is still relatively limited. However, the published studies clearly show the impact of ion channel inhibitors on a number of cellular mechanisms underlying lung cancer cell aggressiveness such as proliferation, migration, invasion, cell cycle progression, or adhesion. Additionally, in vivo experiments reveal that ion channel inhibitors diminish tumor growth in mice. Furthermore, some studies give evidence that ion channel inhibitors can have an influence on the resistance or sensitivity of lung cancer cells to common chemotherapeutics such as paclitaxel or cisplatin.</p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":"181 ","pages":"57-79"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/112_2020_29","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38244371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ligands and Signaling of Mas-Related G Protein-Coupled Receptor-X2 in Mast Cell Activation.","authors":"Yan-Ni Mi, Na-Na Ping, Yong-Xiao Cao","doi":"10.1007/112_2020_53","DOIUrl":"https://doi.org/10.1007/112_2020_53","url":null,"abstract":"<p><p>Mas-related G protein-coupled receptor-X2 (MRGPRX2) is known as a novel receptor to activate mast cells (MCs). MRGPRX2 plays a dual role in promoting MC-dependent host defense and immunomodulation and contributing to the pathogenesis of pseudo-allergic drug reactions, pain, itching, and inflammatory diseases. In this article, we discuss the possible signaling pathways of MCs activation mediated by MRGPRX2 and summarize and classify agonists and inhibitors of MRGPRX2 in MCs activation. MRGPRX2 is a low-affinity and low-selectivity receptor, which allows it to interact with a diverse group of ligands. Diverse MRGPRX2 ligands utilize conserved residues in its transmembrane (TM) domains and carboxyl-terminus Ser/Thr residues to undergo ligand binding and G protein coupling. The coupling likely initiates phosphorylation cascades, induces Ca<sup>2+</sup> mobilization, and causes degranulation and generation of cytokines and chemokines via MAPK and NF-κB pathways, resulting in MCs activation. Agonists of MRGPRX2 on MCs are divided into peptides (including antimicrobial peptides, neuropeptides, MC degranulating peptides, peptide hormones) and nonpeptides (including FDA-approved drugs). Inhibitors of MRGPRX2 include non-selective GPCR inhibitors, herbal extracts, small-molecule MRGPRX2 antagonists, and DNA aptamer drugs. Screening and classifying MRGPRX2 ligands and summarizing their signaling pathways would improve our understanding of MRGPRX2-mediated physiological and pathological effects on MCs.</p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":"179 ","pages":"139-188"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/112_2020_53","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38846710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}