{"title":"神经退行性疾病的内体酸碱平衡。","authors":"Hari Prasad, Rajini Rao","doi":"10.1007/112_2020_25","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative disorders are debilitating and largely untreatable conditions that pose a significant burden to affected individuals and caregivers. Overwhelming evidence supports a crucial preclinical role for endosomal dysfunction as an upstream pathogenic hub and driver in Alzheimer's disease (AD) and related neurodegenerative disorders. We present recent advances on the role of endosomal acid-base homeostasis in neurodegeneration and discuss evidence for converging mechanisms. The strongest genetic risk factor in sporadic AD is the ε4 allele of Apolipoprotein E (ApoE4), which potentiates pre-symptomatic endosomal dysfunction and prominent amyloid beta (Aβ) pathology, although how these pathways are linked mechanistically has remained unclear. There is emerging evidence that the Christianson syndrome protein NHE6 is a prominent ApoE4 effector linking endosomal function to Aβ pathologies. By functioning as a dominant leak pathway for protons, the Na<sup>+</sup>/H<sup>+</sup> exchanger activity of NHE6 limits endosomal acidification and regulates β-secretase (BACE)-mediated Aβ production and LRP1 receptor-mediated Aβ clearance. Pathological endosomal acidification may impact both Aβ generation and clearance mechanisms and emerges as a promising therapeutic target in AD. We also offer our perspective on the complex role of endosomal acid-base homeostasis in the pathogenesis of neurodegeneration and its therapeutic implications for neuronal rescue and repair strategies.</p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":"185 ","pages":"195-231"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/112_2020_25","citationCount":"3","resultStr":"{\"title\":\"Endosomal Acid-Base Homeostasis in Neurodegenerative Diseases.\",\"authors\":\"Hari Prasad, Rajini Rao\",\"doi\":\"10.1007/112_2020_25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurodegenerative disorders are debilitating and largely untreatable conditions that pose a significant burden to affected individuals and caregivers. Overwhelming evidence supports a crucial preclinical role for endosomal dysfunction as an upstream pathogenic hub and driver in Alzheimer's disease (AD) and related neurodegenerative disorders. We present recent advances on the role of endosomal acid-base homeostasis in neurodegeneration and discuss evidence for converging mechanisms. The strongest genetic risk factor in sporadic AD is the ε4 allele of Apolipoprotein E (ApoE4), which potentiates pre-symptomatic endosomal dysfunction and prominent amyloid beta (Aβ) pathology, although how these pathways are linked mechanistically has remained unclear. There is emerging evidence that the Christianson syndrome protein NHE6 is a prominent ApoE4 effector linking endosomal function to Aβ pathologies. By functioning as a dominant leak pathway for protons, the Na<sup>+</sup>/H<sup>+</sup> exchanger activity of NHE6 limits endosomal acidification and regulates β-secretase (BACE)-mediated Aβ production and LRP1 receptor-mediated Aβ clearance. Pathological endosomal acidification may impact both Aβ generation and clearance mechanisms and emerges as a promising therapeutic target in AD. We also offer our perspective on the complex role of endosomal acid-base homeostasis in the pathogenesis of neurodegeneration and its therapeutic implications for neuronal rescue and repair strategies.</p>\",\"PeriodicalId\":21169,\"journal\":{\"name\":\"Reviews of Physiology Biochemistry and Pharmacology\",\"volume\":\"185 \",\"pages\":\"195-231\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/112_2020_25\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Physiology Biochemistry and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/112_2020_25\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Physiology Biochemistry and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/112_2020_25","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Endosomal Acid-Base Homeostasis in Neurodegenerative Diseases.
Neurodegenerative disorders are debilitating and largely untreatable conditions that pose a significant burden to affected individuals and caregivers. Overwhelming evidence supports a crucial preclinical role for endosomal dysfunction as an upstream pathogenic hub and driver in Alzheimer's disease (AD) and related neurodegenerative disorders. We present recent advances on the role of endosomal acid-base homeostasis in neurodegeneration and discuss evidence for converging mechanisms. The strongest genetic risk factor in sporadic AD is the ε4 allele of Apolipoprotein E (ApoE4), which potentiates pre-symptomatic endosomal dysfunction and prominent amyloid beta (Aβ) pathology, although how these pathways are linked mechanistically has remained unclear. There is emerging evidence that the Christianson syndrome protein NHE6 is a prominent ApoE4 effector linking endosomal function to Aβ pathologies. By functioning as a dominant leak pathway for protons, the Na+/H+ exchanger activity of NHE6 limits endosomal acidification and regulates β-secretase (BACE)-mediated Aβ production and LRP1 receptor-mediated Aβ clearance. Pathological endosomal acidification may impact both Aβ generation and clearance mechanisms and emerges as a promising therapeutic target in AD. We also offer our perspective on the complex role of endosomal acid-base homeostasis in the pathogenesis of neurodegeneration and its therapeutic implications for neuronal rescue and repair strategies.
期刊介绍:
The highly successful Reviews of Physiology, Biochemistry and Pharmacology continue to offer high-quality, in-depth reviews covering the full range of modern physiology, biochemistry and pharmacology. Leading researchers are specially invited to provide a complete understanding of the key topics in these archetypal multidisciplinary fields. In a form immediately useful to scientists, this periodical aims to filter, highlight and review the latest developments in these rapidly advancing fields.