Remote Sensing in Ecology and Conservation最新文献

筛选
英文 中文
Amazonian manatee critical habitat revealed by artificial intelligence‐based passive acoustic techniques 基于人工智能的被动声学技术揭示亚马逊海牛关键栖息地
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2024-10-31 DOI: 10.1002/rse2.418
Florence Erbs, Mike van der Schaar, Miriam Marmontel, Marina Gaona, Emiliano Ramalho, Michel André
{"title":"Amazonian manatee critical habitat revealed by artificial intelligence‐based passive acoustic techniques","authors":"Florence Erbs, Mike van der Schaar, Miriam Marmontel, Marina Gaona, Emiliano Ramalho, Michel André","doi":"10.1002/rse2.418","DOIUrl":"https://doi.org/10.1002/rse2.418","url":null,"abstract":"For many species at risk, monitoring challenges related to low visual detectability and elusive behavior limit the use of traditional visual surveys to collect critical information, hindering the development of sound conservation strategies. Passive acoustics can cost‐effectively acquire terrestrial and underwater long‐term data. However, to extract valuable information from large datasets, automatic methods need to be developed, tested and applied. Combining passive acoustics with deep learning models, we developed a method to monitor the secretive Amazonian manatee over two consecutive flooded seasons in the Brazilian Amazon floodplains. Subsequently, we investigated the vocal behavior parameters based on vocalization frequencies and temporal characteristics in the context of habitat use. A Convolutional Neural Network model successfully detected Amazonian manatee vocalizations with a 0.98 average precision on training data. Similar classification performance in terms of precision (range: 0.83–1.00) and recall (range: 0.97–1.00) was achieved for each year. Using this model, we evaluated manatee acoustic presence over a total of 226 days comprising recording periods in 2021 and 2022. Manatee vocalizations were consistently detected during both years, reaching 94% daily temporal occurrence in 2021, and up to 11 h a day with detections during peak presence. Manatee calls were characterized by a high emphasized frequency and high repetition rate, being mostly produced in rapid sequences. This vocal behavior strongly indicates an exchange between females and their calves. Combining passive acoustic monitoring with deep learning models, and extending temporal monitoring and increasing species detectability, we demonstrated that the approach can be used to identify manatee core habitats according to seasonality. The combined method represents a reliable, cost‐effective, scalable ecological monitoring technique that can be integrated into long‐term, standardized survey protocols of aquatic species. It can considerably benefit the monitoring of inaccessible regions, such as the Amazonian freshwater systems, which are facing immediate threats from increased hydropower construction.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"240 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combining satellite and field data reveals Congo's forest types structure, functioning and composition 结合卫星和实地数据揭示刚果森林类型的结构、功能和组成
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2024-10-12 DOI: 10.1002/rse2.419
Juliette Picard, Maïalicah M. Nungi‐Pambu Dembi, Nicolas Barbier, Guillaume Cornu, Pierre Couteron, Eric Forni, Gwili Gibbon, Felix Lim, Pierre Ploton, Robin Pouteau, Paul Tresson, Tom van Loon, Gaëlle Viennois, Maxime Réjou‐Méchain
{"title":"Combining satellite and field data reveals Congo's forest types structure, functioning and composition","authors":"Juliette Picard, Maïalicah M. Nungi‐Pambu Dembi, Nicolas Barbier, Guillaume Cornu, Pierre Couteron, Eric Forni, Gwili Gibbon, Felix Lim, Pierre Ploton, Robin Pouteau, Paul Tresson, Tom van Loon, Gaëlle Viennois, Maxime Réjou‐Méchain","doi":"10.1002/rse2.419","DOIUrl":"https://doi.org/10.1002/rse2.419","url":null,"abstract":"Tropical moist forests are not the homogeneous green carpet often illustrated in maps or considered by global models. They harbour a complex mixture of forest types organized at different spatial scales that can now be more accurately mapped thanks to remote sensing products and artificial intelligence. In this study, we built a large‐scale vegetation map of the North of Congo and assessed the environmental drivers of the main forest types, their forest structure, their floristic and functional compositions and their faunistic composition. To build the map, we used Sentinel‐2 satellite images and recent deep learning architectures. We tested the effect of topographically determined water availability on vegetation type distribution by linking the map with a water drainage depth proxy (HAND, height above the nearest drainage index). We also described vegetation type structure and composition (floristic, functional and associated fauna) by linking the map with data from large inventories and derived from satellite images. We found that water drainage depth is a major driver of forest type distribution and that the different forest types are characterized by different structure, composition and functions, bringing new insights about their origins and successional dynamics. We discuss not only the crucial role of soil–water depth, but also the importance of consistently reproducing such maps through time to develop an accurate monitoring of tropical forest types and functions, and we provide insights on peculiar forest types (Marantaceae forests and monodominant <jats:italic>Gilbertiodendron</jats:italic> forests) on which future studies should focus more. Under the current context of global change, expected to trigger major forest structural and compositional changes in the tropics, an appropriate monitoring strategy of the spatio‐temporal dynamics of forest types and their associated floristic and faunistic composition would considerably help anticipate detrimental shifts.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"16 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management 利用下一代空间地球观测进行燃料监测和野地火灾管理
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2024-08-17 DOI: 10.1002/rse2.416
Rodrigo V. Leite, Cibele Amaral, Christopher S. R. Neigh, Diogo N. Cosenza, Carine Klauberg, Andrew T. Hudak, Luiz Aragão, Douglas C. Morton, Shane Coffield, Tempest McCabe, Carlos A. Silva
{"title":"Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management","authors":"Rodrigo V. Leite, Cibele Amaral, Christopher S. R. Neigh, Diogo N. Cosenza, Carine Klauberg, Andrew T. Hudak, Luiz Aragão, Douglas C. Morton, Shane Coffield, Tempest McCabe, Carlos A. Silva","doi":"10.1002/rse2.416","DOIUrl":"https://doi.org/10.1002/rse2.416","url":null,"abstract":"Managing fuels is a key strategy for mitigating the negative impacts of wildfires on people and the environment. The use of satellite‐based Earth observation data has become an important tool for managers to optimize fuel treatment planning at regional scales. Fortunately, several new sensors have been launched in the last few years, providing novel opportunities to enhance fuel characterization. Herein, we summarize the potential improvements in fuel characterization at large scale (i.e., hundreds to thousands of km<jats:sup>2</jats:sup>) with high spatial and spectral resolution arising from the use of new spaceborne instruments with near‐global, freely‐available data. We identified sensors at spatial resolutions suitable for fuel treatment planning, featuring: lidar data for characterizing vegetation structure; hyperspectral sensors for retrieving chemical compounds and species composition; and dense time series derived from multispectral and synthetic aperture radar sensors for mapping phenology and moisture dynamics. We also highlight future hyperspectral and radar missions that will deliver valuable and complementary information for a new era of fuel load characterization from space. The data volume that is being generated may still challenge the usability by a diverse group of stakeholders. Seamless cyberinfrastructure and community engagement are paramount to guarantee the use of these cutting‐edge datasets for fuel monitoring and wildland fire management across the world.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"96 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141998774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The application of unoccupied aerial systems (UAS) for monitoring intertidal oyster density and abundance 应用无人机系统(UAS)监测潮间带牡蛎的密度和丰度
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2024-08-13 DOI: 10.1002/rse2.417
Jenny Bueno, Sarah E. Lester, Joshua L. Breithaupt, Sandra Brooke
{"title":"The application of unoccupied aerial systems (UAS) for monitoring intertidal oyster density and abundance","authors":"Jenny Bueno, Sarah E. Lester, Joshua L. Breithaupt, Sandra Brooke","doi":"10.1002/rse2.417","DOIUrl":"https://doi.org/10.1002/rse2.417","url":null,"abstract":"The eastern oyster (<jats:italic>Crassostrea virginica</jats:italic>) is a coastal foundation species currently under threat from anthropogenic activities both globally and in the Apalachicola Bay region of north Florida. Oysters provide numerous ecosystem services, and it is important to establish efficient and reliable methods for their effective monitoring and management. Traditional monitoring techniques, such as quadrat density sampling, can be labor‐intensive, destructive of both oysters and reefs, and may be spatially limited. In this study, we demonstrate how unoccupied aerial systems (UAS) can be used to efficiently generate high‐resolution geospatial oyster reef condition data over large areas. These data, with appropriate ground truthing and minimal destructive sampling, can be used to effectively monitor the size and abundance of oyster clusters on intertidal reefs. Utilizing structure‐from‐motion photogrammetry techniques to create three‐dimensional topographic models, we reconstructed the distribution, spatial density and size of oyster clusters on intertidal reefs in Apalachicola Bay. Ground truthing revealed 97% accuracy for cluster presence detection by UAS products and we confirmed that live oysters are predominately located within clusters, supporting the use of cluster features to estimate oyster population status. We found a positive significant relationship between cluster size and live oyster counts. These findings allowed us to extract clusters from geospatial products and predict live oyster abundance and spatial density on 138 reefs covering 138 382 m<jats:sup>2</jats:sup> over two locations. Oyster densities varied between sites, with higher live oyster densities occurring at one site within the Apalachicola Bay bounds, and lower oyster densities in areas adjacent to Apalachicola Bay. Repeated monitoring at one site in 2022 and 2023 revealed a relatively stable oyster density over time. This study demonstrated the successful application of high‐resolution drone imagery combined with cluster sampling, providing a repeatable method for mapping and monitoring to inform conservation, restoration and management strategies for intertidal oyster populations.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"17 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying vegetation cover on coastal active dunes using nationwide aerial image analysis 利用全国航空图像分析量化沿海活动沙丘的植被覆盖率
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2024-07-16 DOI: 10.1002/rse2.410
Cate Ryan, Hannah L. Buckley, Craig D. Bishop, Graham Hinchliffe, Bradley C. Case
{"title":"Quantifying vegetation cover on coastal active dunes using nationwide aerial image analysis","authors":"Cate Ryan, Hannah L. Buckley, Craig D. Bishop, Graham Hinchliffe, Bradley C. Case","doi":"10.1002/rse2.410","DOIUrl":"https://doi.org/10.1002/rse2.410","url":null,"abstract":"Coastal active dunes provide vital biodiversity, habitat, and ecosystem services, yet they are one of the most endangered and understudied ecosystems worldwide. Therefore, monitoring the status of these systems is essential, but field vegetation surveys are time‐consuming and expensive. Remotely sensed aerial imagery offers spatially continuous, low‐cost, high‐resolution coverage, allowing for vegetation mapping across larger areas than traditional field surveys. Taking Aotearoa New Zealand as a case study, we used a nationally representative sample of coastal active dunes to classify vegetation from red‐green‐blue (RGB) high‐resolution (0.075–0.75 m) aerial imagery with object‐based image analysis. The mean overall accuracy was 0.76 across 21 beaches for aggregated classes, and key cover classes, such as sand, sandbinders, and woody vegetation, were discerned. However, differentiation among woody vegetation species on semi‐stable and stable dunes posed a challenge. We developed a national cover typology from the classification, comprising seven vegetation types. Classification tree models showed that where human activity was higher, it was more important than geomorphic factors in influencing the relative percent cover of the different active dune cover classes. Our methods provide a quantitative approach to characterizing the cover classes on active dunes at a national scale, which are relevant for conservation management, including habitat mapping, determining species occupancy, indigenous dominance, and the representativeness of remaining active dunes.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"28 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping emergent coral reefs: a comparison of pixel‐ and object‐based methods 绘制新出现的珊瑚礁:基于像素和对象的方法比较
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2024-05-29 DOI: 10.1002/rse2.401
Amy Stone, Sharyn Hickey, Ben Radford, Mary Wakeford
{"title":"Mapping emergent coral reefs: a comparison of pixel‐ and object‐based methods","authors":"Amy Stone, Sharyn Hickey, Ben Radford, Mary Wakeford","doi":"10.1002/rse2.401","DOIUrl":"https://doi.org/10.1002/rse2.401","url":null,"abstract":"Although emergent coral reefs represent a significant proportion of overall reef habitat, they are often excluded from monitoring projects due to their shallow and exposed setting that makes them challenging to access. Using drones to survey emergent reefs overcomes issues around access to this habitat type; however, methods for deriving robust monitoring metrics, such as coral cover, are not well developed for drone imagery. To address this knowledge gap, we compare the effectiveness of two remote sensing methods in quantifying broad substrate groups, such as coral cover, on a lagoon bommie, namely a pixel‐based (PB) model versus an object‐based (OB) model. For the OB model, two segmentation methods were considered: an optimized mean shift segmentation and the fully automated Segment Anything Model (SAM). Mean shift segmentation was assessed as the preferred method and applied in the final OB model (SAM exhibited poor identification of coral patches on the bommie). While good cross‐validation accuracies were achieved for both models, the PB had generally higher overall accuracy (mean accuracy PB = 75%, OB = 70%) and kappa (mean kappa PB = 0.69, OB = 0.63), making it the preferred method for monitoring coral cover. Both models were limited by the low contrast between Coral features and the bommie substrate in the drone imagery, causing indistinct segment boundaries in the OB model that increased misclassification. For both models, the inclusion of a drone‐derived digital surface model and multiscale derivatives was critical to predicting coral habitat. Our success in creating emergent reef habitat models with high accuracy demonstrates the niche role drones could play in monitoring these habitat types, which are particularly vulnerable to rising sea surface and air temperatures, as well as sea level rise which is predicted to outpace reef vertical accretion rates.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"31 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141177384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncovering mangrove range limits using very high resolution satellite imagery to detect fine‐scale mangrove and saltmarsh habitats in dynamic coastal ecotones 利用甚高分辨率卫星图像探测动态沿海生态带中红树林和盐沼生境的精细尺度,揭示红树林的范围极限
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2024-05-24 DOI: 10.1002/rse2.394
Cheryl L. Doughty, Kyle C. Cavanaugh, Samantha Chapman, Lola Fatoyinbo
{"title":"Uncovering mangrove range limits using very high resolution satellite imagery to detect fine‐scale mangrove and saltmarsh habitats in dynamic coastal ecotones","authors":"Cheryl L. Doughty, Kyle C. Cavanaugh, Samantha Chapman, Lola Fatoyinbo","doi":"10.1002/rse2.394","DOIUrl":"https://doi.org/10.1002/rse2.394","url":null,"abstract":"Mangroves are important ecosystems for coastal biodiversity, resilience and carbon dynamics that are being threatened globally by human pressures and the impacts of climate change. Yet, at several geographic range limits in tropical–temperate transition zones, mangrove ecosystems are expanding poleward in response to changing macroclimatic drivers. Mangroves near range limits often grow to smaller statures and form dynamic, patchy distributions with other coastal habitats, which are difficult to map using moderate‐resolution (30‐m) satellite imagery. As a result, many of these mangrove areas are missing in global distribution maps. To better map small, scrub mangroves, we tested Landsat (30‐m) and Sentinel (10‐m) against very high resolution (VHR) Planet (3‐m) and WorldView (1.8‐m) imagery and assessed the accuracy of machine learning classification approaches in discerning current (2022) mangrove and saltmarsh from other coastal habitats in a rapidly changing ecotone along the east coast of Florida, USA. Our aim is to (1) quantify the mappable differences in landscape composition and complexity, class dominance and spatial properties of mangrove and saltmarsh patches due to image resolution; and (2) to resolve mapping uncertainties in the region. We found that the ability of Landsat to map mangrove distributions at the leading range edge was hampered by the size and extent of mangrove stands being too small for detection (50% accuracy). WorldView was the most successful in discerning mangroves from other wetland habitats (84% accuracy), closely followed by Planet (82%) and Sentinel (81%). With WorldView, we detected 800 ha of mangroves within the Florida range‐limit study area, 35% more mangroves than were detected with Planet, 114% more than Sentinel and 537% more than Landsat. Higher‐resolution imagery helped reveal additional variability in landscape metrics quantifying diversity, spatial configuration and connectedness among mangrove and saltmarsh habitats at the landscape, class and patch scales. Overall, VHR satellite imagery improved our ability to map mangroves at range limits and can help supplement moderate‐resolution global distributions and outdated regional maps.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"26 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating beluga whale abundance from space: using drones to ground‐validate VHR satellite imagery 从太空估算白鲸数量:使用无人机对 VHR 卫星图像进行地面验证
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2024-05-08 DOI: 10.1002/rse2.396
Jordan B. Stewart, Justine M. Hudson, Bryanna A. H. Sherbo, Cortney A. Watt
{"title":"Estimating beluga whale abundance from space: using drones to ground‐validate VHR satellite imagery","authors":"Jordan B. Stewart, Justine M. Hudson, Bryanna A. H. Sherbo, Cortney A. Watt","doi":"10.1002/rse2.396","DOIUrl":"https://doi.org/10.1002/rse2.396","url":null,"abstract":"Routine monitoring of cetaceans is imperative for understanding their population trends and making informed management decisions. However, the inherent nature of cetaceans and the marine ecosystems they inhabit make annual population surveys logistically and economically challenging with current survey methods. One emerging solution is utilizing very high‐resolution (VHR) satellite imagery, which is a logistically efficient method for providing an instantaneous view of areas spanning hundreds of square kilometers. The objective of this study was to determine two factors required to reliably conduct beluga whale population abundance estimates with VHR satellite imagery: (1) depths that beluga whales are visible in VHR satellite images, which are used to define availability bias correction factors, and (2) a comparison of abundance estimates in VHR satellite imagery to current aerial methods. We submerged beluga whale models to different depths in two different water clarities and determined that beluga whales are distinguished only at the surface in turbid water (Secchi depth: 2.56 m) and at depths of 0–2 m in clear water (Secchi depth: 4.04 m). Based on the proportion of time beluga whales spend at these depths, an availability bias correction factor for Western Hudson Bay beluga whales was defined as 2.40 ± 0.16 for turbid water and 1.89 ± 0.05 for clear water. Synchronous ground‐validation surveys determined availability corrected beluga whale abundance estimates in 0.31 m VHR satellite imagery (<jats:italic>n</jats:italic> = 173 beluga whales) and imagery that was HD sharpened using a proprietary algorithm to approximate 0.15 m resolution (<jats:italic>n</jats:italic> = 170) to be comparable to drone imagery (<jats:italic>n</jats:italic> = 164). VHR satellite imagery has the potential to increase the frequency of beluga whale population surveys, which has become increasingly important as beluga whales face rapid ecosystem changes and increased anthropogenic disturbances.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"2014 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using multiscale lidar to determine variation in canopy structure from African forest elephant trails 利用多尺度激光雷达确定非洲森林大象足迹的树冠结构变化
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2024-05-08 DOI: 10.1002/rse2.395
Jenna M. Keany, Patrick Burns, Andrew J. Abraham, Patrick Jantz, Loic Makaga, Sassan Saatchi, Fiona Maisels, Katharine Abernethy, Christopher E. Doughty
{"title":"Using multiscale lidar to determine variation in canopy structure from African forest elephant trails","authors":"Jenna M. Keany, Patrick Burns, Andrew J. Abraham, Patrick Jantz, Loic Makaga, Sassan Saatchi, Fiona Maisels, Katharine Abernethy, Christopher E. Doughty","doi":"10.1002/rse2.395","DOIUrl":"https://doi.org/10.1002/rse2.395","url":null,"abstract":"Recently classified as a unique species by the IUCN, African forest elephants (<jats:italic>Loxodonta cyclotis</jats:italic>) are critically endangered due to severe poaching. With limited knowledge about their ecological role due to the dense tropical forests they inhabit in central Africa, it is unclear how the Afrotropics are influenced by elephants. Although their role as seed dispersers is well known, they may also drive large‐scale processes that determine forest structure through the creation of elephant trails and browsing the understory, allowing larger, carbon‐dense trees to succeed. Multiple scales of lidar were collected by NASA in Lopé National Park, Gabon from 2015 to 2022. Utilizing two airborne lidar datasets in an African forest elephant stronghold, detailed canopy structural information was used in conjunction with elephant trail data to determine how forest structure varies on and off trails. Forest along elephant trails displayed different structural characteristics than forested areas off trails, with lower canopy height, canopy cover, and different vertical distribution of plant density. Less plant area density was found on trails at 1 m in height, while more vegetation was found at 12 m, compared to off trail locations. Trails in forest areas with previous logging history had lower plant area in the top of the canopy. Forest elephants can be considered as “logging light” ecosystem engineers, affecting canopy structure through browsing and movement. Both airborne lidar scales were able to capture elephant impact along trails, with the high‐resolution discrete return lidar performing higher than waveform lidar.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"8 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Annual extent of prescribed burning on moorland in Great Britain and overlap with ecosystem services 英国荒原上每年规定的焚烧范围以及与生态系统服务的重叠情况
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2024-04-29 DOI: 10.1002/rse2.389
Mike P. Shewring, Nicholas I. Wilkinson, Emma L. Teuten, Graeme M. Buchanan, Patrick Thompson, David J. T. Douglas
{"title":"Annual extent of prescribed burning on moorland in Great Britain and overlap with ecosystem services","authors":"Mike P. Shewring, Nicholas I. Wilkinson, Emma L. Teuten, Graeme M. Buchanan, Patrick Thompson, David J. T. Douglas","doi":"10.1002/rse2.389","DOIUrl":"https://doi.org/10.1002/rse2.389","url":null,"abstract":"In the UK uplands, prescribed burning of unenclosed heath, grass and blanket bog (‘moorland’) is used to support game shooting and grazing. Burning on moorland is contentious due to its impact on peat soils, hydrology and habitat condition. There is little information on spatial and temporal patterns of burning, the overlap with soil carbon and sensitive habitats and, importantly, whether these patterns are changing. This information is required to assess the sustainability of burning and the effectiveness of new legislation. We developed a method for semi‐automated detection of burning using satellite imagery – our best performing model has a balanced accuracy of 84.9%. We identified annual burn areas in Great Britain in five burning seasons from 2017/18 to 2021/22 of 8333 to 20 974 ha (average 15 250 ha year<jats:sup>−1</jats:sup>). Annual extent in England in 2021/22 was 73% lower than the average of the four previous seasons. Burning was identified over carbon‐rich soils (mean 5150 ha or 34% by area of all burning annually) and on steep slopes – 915 ha across the five seasons (1.3%), contravening guidance. Burning (&gt;1 ha) was recorded in 14% of UK protected areas (PAs) and, within these, the percentage area of moorland burned varied from 2 to 31%. In England in some years, the percentage area of moorland burned inside PAs was higher than outside, while this was not the case in Scotland. Burning in sensitive alpine habitats totalled 158 ha across the five seasons. The reduction in burned area in England in 2021/22 could relate to England‐specific legislation, introduced in May 2021, to prohibit burning on deep peat in PAs. This suggests that regulation can be effective. However, the continued overlap with sensitive features suggests that burning falls short of sustainable practices. Our method will enable repeatable re‐assessment of burning extents and overlap with ecosystem services.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"9 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140814580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信