Bridging the gap in deep seafloor management: Ultra fine‐scale ecological habitat characterization of large seascapes

IF 4.3 2区 环境科学与生态学 Q1 ECOLOGY
Ole Johannes Ringnander Sørensen, Itai van Rijn, Shai Einbinder, Hagai Nativ, Aviad Scheinin, Ziv Zemah‐Shamir, Eyal Bigal, Leigh Livne, Anat Tsemel, Or M. Bialik, Gleb Papeer, Dan Tchernov, Yizhaq Makovsky
{"title":"Bridging the gap in deep seafloor management: Ultra fine‐scale ecological habitat characterization of large seascapes","authors":"Ole Johannes Ringnander Sørensen, Itai van Rijn, Shai Einbinder, Hagai Nativ, Aviad Scheinin, Ziv Zemah‐Shamir, Eyal Bigal, Leigh Livne, Anat Tsemel, Or M. Bialik, Gleb Papeer, Dan Tchernov, Yizhaq Makovsky","doi":"10.1002/rse2.70002","DOIUrl":null,"url":null,"abstract":"The United Nations' sustainable development goal to designate 30% of the oceans as marine protected areas by 2030 requires practical management tools, and in turn ecologically meaningful mapping of the seafloor. Particularly challenging is the mesophotic zone, a critical component of the marine system, a biodiversity hotspot, and a potential refuge. Here, we introduce a novel seafloor habitat management workflow, integrating cm‐scale synthetic aperture sonar (SAS) and multibeam bathymetry surveying with efficient ecotope characterization. In merely 6 h, we mapped ~5 km<jats:sup>2</jats:sup> of a complex mesophotic reef at sub‐metric resolution. Applying a deep learning classifier on the SAS imagery, we classified four habitats with an accuracy of 84% and defined relevant fine‐scale ecotones. Visual census with precise in situ sampling guided by SAS images for navigation were utilized for ecological characterization of mapped units. Our preliminary fish surveys indicate the ecological importance of highly complex areas and rock/sand ecotones. These less abundant habitats would be largely underrepresented if surveying the area without prior consideration. Thus, our approach is demonstrated to generate scalable habitat maps at resolutions pertinent to relevant biotas, previously inaccessible in the mesophotic, advancing ecological modeling and management of large seascapes.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"11 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.70002","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The United Nations' sustainable development goal to designate 30% of the oceans as marine protected areas by 2030 requires practical management tools, and in turn ecologically meaningful mapping of the seafloor. Particularly challenging is the mesophotic zone, a critical component of the marine system, a biodiversity hotspot, and a potential refuge. Here, we introduce a novel seafloor habitat management workflow, integrating cm‐scale synthetic aperture sonar (SAS) and multibeam bathymetry surveying with efficient ecotope characterization. In merely 6 h, we mapped ~5 km2 of a complex mesophotic reef at sub‐metric resolution. Applying a deep learning classifier on the SAS imagery, we classified four habitats with an accuracy of 84% and defined relevant fine‐scale ecotones. Visual census with precise in situ sampling guided by SAS images for navigation were utilized for ecological characterization of mapped units. Our preliminary fish surveys indicate the ecological importance of highly complex areas and rock/sand ecotones. These less abundant habitats would be largely underrepresented if surveying the area without prior consideration. Thus, our approach is demonstrated to generate scalable habitat maps at resolutions pertinent to relevant biotas, previously inaccessible in the mesophotic, advancing ecological modeling and management of large seascapes.
弥合深海底管理的差距:大海景的超细尺度生态栖息地特征
联合国的可持续发展目标是到2030年将30%的海洋指定为海洋保护区,这需要切实可行的管理工具,并相应地绘制具有生态意义的海底地图。尤其具有挑战性的是中鳍区,它是海洋系统的关键组成部分,是生物多样性的热点,也是潜在的避难所。本文介绍了一种新的海底生境管理工作流程,该流程将厘米尺度合成孔径声呐(SAS)和多波束测深测量相结合,并具有高效的生态环境表征。在短短6小时内,我们以亚米分辨率绘制了约5平方公里的复杂中叶藻礁。在SAS图像上应用深度学习分类器,我们以84%的准确率对四个栖息地进行了分类,并定义了相关的细尺度交错带。利用SAS图像导航引导的精确原位采样的视觉普查,对测绘单元进行生态表征。我们的初步鱼类调查表明,高度复杂的地区和岩石/沙子过渡带的生态重要性。如果在没有事先考虑的情况下对该地区进行调查,这些较少的栖息地将在很大程度上被低估。因此,我们的方法被证明可以生成与相关生物区系相关的分辨率的可扩展栖息地地图,这些地图以前无法在中微藻中获得,从而推进了大型海景的生态建模和管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Remote Sensing in Ecology and Conservation
Remote Sensing in Ecology and Conservation Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
9.80
自引率
5.50%
发文量
69
审稿时长
18 weeks
期刊介绍: emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students. Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信