{"title":"Fine‐scale landscape phenology revealed through time‐lapse imagery: implications for conservation and management of an endangered migratory herbivore","authors":"C. John, Jeffrey T. Kerby, T. Stephenson, E. Post","doi":"10.1002/rse2.331","DOIUrl":"https://doi.org/10.1002/rse2.331","url":null,"abstract":"Climate change modifies plant phenology through shifts in seasonal temperature and precipitation. Because the timing of plant growth can limit herbivore population dynamics, climatic alteration of historical patterns of vegetation seasonality may alter population trajectories in such taxa. Thus, sound management decisions may depend on understanding how plant growth varies across a landscape within and among distinct management units or protected areas. Here, we examine spatial variation in the timing of spring plant growth, measured using a network of automated time‐lapse cameras distributed across the range of endangered Sierra Nevada bighorn sheep (Ovis canadensis sierrae) in California, USA. We tracked greenness of individual plants across 2 years to compare spatial patterns of forage phenology in snowy and drought years. Green‐up timing was derived for individual plants across the camera network and compared with local estimates of green‐up timing from satellite data. Satellite‐derived estimates of green‐up timing showed strong correspondence with camera‐derived estimates in areas with dense vegetation cover and weak correspondence in areas with sparse vegetation cover. Daily time‐lapse imagery revealed consistent variation in green‐up timing across elevation, both among latitudinal zones and among individual plant species. Green‐up timing was earlier in 2020 than in 2019, reflecting differences in the end of the snowy season. Because bighorn forage seasonally on alpine species with a brief growing period, spring migration of bighorn may be linked to variation in snowmelt and plant growth across elevational gradients.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44936886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Issue Information","authors":"","doi":"10.1002/rse2.280","DOIUrl":"https://doi.org/10.1002/rse2.280","url":null,"abstract":"","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43277761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lisa Mandl, A. Stritih, R. Seidl, C. Ginzler, Cornelius Senf
{"title":"Spaceborne\u0000 LiDAR\u0000 for characterizing forest structure across scales in the European Alps","authors":"Lisa Mandl, A. Stritih, R. Seidl, C. Ginzler, Cornelius Senf","doi":"10.1002/rse2.330","DOIUrl":"https://doi.org/10.1002/rse2.330","url":null,"abstract":"The launch of NASA's Global Ecosystem Dynamics Investigation (GEDI) mission in 2018 opens new opportunities to quantitatively describe forest ecosystems across large scales. While GEDI's height‐related metrics have already been extensively evaluated, the utility of GEDI for assessing the full spectrum of structural variability—particularly in topographically complex terrain—remains incompletely understood. Here, we quantified GEDI's potential to estimate forest structure in mountain landscapes at the plot and landscape level, with a focus on variables of high relevance in ecological applications. We compared five GEDI metrics including relative height percentiles, plant area index, cover and understory cover to airborne laser scanning (ALS) data in two contrasting mountain landscapes in the European Alps. At the plot level, we investigated the impact of leaf phenology and topography on GEDI's accuracy. At the landscape‐scale, we evaluated the ability of GEDIs sample‐based approach to characterize complex mountain landscapes by comparing it to wall‐to‐wall ALS estimates and evaluated the capacity of GEDI to quantify important indicators of ecosystem functions and services (i.e., avalanche protection, habitat provision, carbon storage). Our results revealed only weak to moderate agreement between GEDI and ALS at the plot level (R2 from 0.03 to 0.61), with GEDI uncertainties increasing with slope. At the landscape‐level, however, the agreement between GEDI and ALS was generally high, with R2 values ranging between 0.51 and 0.79. Both GEDI and ALS agreed in identifying areas of high avalanche protection, habitat provision, and carbon storage, highlighting the potential of GEDI for landscape‐scale analyses in the context of ecosystem dynamics and management.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44322751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}