Remote Sensing in Ecology and Conservation最新文献

筛选
英文 中文
Characterizing aboveground biomass and tree cover of regrowing forests in Brazil using multi‐source remote sensing data 利用多源遥感数据表征巴西再生森林的地上生物量和树木覆盖
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-04-27 DOI: 10.1002/rse2.328
Na Chen, N. Tsendbazar, Daniela Requena Suarez, J. Verbesselt, M. Herold
{"title":"Characterizing aboveground biomass and tree cover of regrowing forests in Brazil using multi‐source remote sensing data","authors":"Na Chen, N. Tsendbazar, Daniela Requena Suarez, J. Verbesselt, M. Herold","doi":"10.1002/rse2.328","DOIUrl":"https://doi.org/10.1002/rse2.328","url":null,"abstract":"Characterization of regrowing forests is vital for understanding forest dynamics to assess the impacts on carbon stocks and to support sustainable forest management. Although remote sensing is a key tool for understanding and monitoring forest dynamics, the use of exclusively remotely sensed data to explore the effects of different variables on regrowing forests across all biomes in Brazil has rarely been investigated. Here, we analyzed how environmental and human factors affect regrowing forests. Based on Brazil's secondary forest age map, 3060 locations disturbed between 1984 and 2018 were sampled, interpreted and analyzed in different biomes. We interpreted the time since disturbance for the sampled pixels in Google Earth Engine. Elevation, slope, climatic water deficit (CWD), the total Nitrogen of soil, cation exchange capacity (CEC) of soil, surrounding tree cover, distance to roads, distance to settlements and fire frequency were analyzed in their importance for predicting aboveground biomass (AGB) and tree cover derived from global forest aboveground biomass map and tree cover map, respectively. Results show that time since disturbance interpreted from satellite time series is the most important predictor for characterizing AGB and tree cover of regrowing forests. AGB increased with increasing time since disturbance, surrounding tree cover, soil total N, slope, distance to roads, distance to settlements and decreased with larger fire frequency, CWD and CEC of soil. Tree cover increased with larger time since disturbance, soil total N, surrounding tree cover, distance to roads, distance to settlements, slope and decreased with increasing elevation and CWD. These results emphasize the importance of remotely sensing products as key opportunities to improve the characterization of forest regrowth and to reduce data gaps and uncertainties related to forest carbon sink estimation. Our results provide a better understanding of regional forest dynamics, toward developing and assessing effective forest‐related restoration and climatic mitigation strategies.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42443337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Challenges and solutions for automated avian recognition in aerial imagery 航空图像中鸟类自动识别的挑战和解决方案
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-04-26 DOI: 10.1002/rse2.318
Zhongqi Miao, Stella X. Yu, K. Landolt, M. Koneff, Timothy P. White, Luke J. Fara, E. Hlavacek, B. Pickens, Travis J. Harrison, W. Getz
{"title":"Challenges and solutions for automated avian recognition in aerial imagery","authors":"Zhongqi Miao, Stella X. Yu, K. Landolt, M. Koneff, Timothy P. White, Luke J. Fara, E. Hlavacek, B. Pickens, Travis J. Harrison, W. Getz","doi":"10.1002/rse2.318","DOIUrl":"https://doi.org/10.1002/rse2.318","url":null,"abstract":"Remote aerial sensing provides a non‐invasive, large geographical‐scale technology for avian monitoring, but the manual processing of images limits its development and applications. Artificial Intelligence (AI) methods can be used to mitigate this manual image processing requirement. The implementation of AI methods, however, has several challenges: (1) imbalanced (i.e., long‐tailed) data distribution, (2) annotation uncertainty in categorization, and (3) dataset discrepancies across different study sites. Here we use aerial imagery data of waterbirds around Cape Cod and Lake Michigan in the United States to examine how these challenges limit avian recognition performance. We review existing solutions and demonstrate as use cases how methods like Label Distribution Aware Marginal Loss with Deferred Re‐Weighting, hierarchical classification, and FixMatch address the three challenges. We also present a new approach to tackle the annotation uncertainty challenge using a Soft‐fine Pseudo‐Label methodology. Finally, we aim with this paper to increase awareness in the ecological remote sensing community of these challenges and bridge the gap between ecological applications and state‐of‐the‐art computer science, thereby opening new doors to future research.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42799043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Fine‐scale landscape phenology revealed through time‐lapse imagery: implications for conservation and management of an endangered migratory herbivore 通过时间推移图像揭示的细尺度景观物候:对濒危迁徙食草动物保护和管理的影响
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-04-08 DOI: 10.1002/rse2.331
C. John, Jeffrey T. Kerby, T. Stephenson, E. Post
{"title":"Fine‐scale landscape phenology revealed through time‐lapse imagery: implications for conservation and management of an endangered migratory herbivore","authors":"C. John, Jeffrey T. Kerby, T. Stephenson, E. Post","doi":"10.1002/rse2.331","DOIUrl":"https://doi.org/10.1002/rse2.331","url":null,"abstract":"Climate change modifies plant phenology through shifts in seasonal temperature and precipitation. Because the timing of plant growth can limit herbivore population dynamics, climatic alteration of historical patterns of vegetation seasonality may alter population trajectories in such taxa. Thus, sound management decisions may depend on understanding how plant growth varies across a landscape within and among distinct management units or protected areas. Here, we examine spatial variation in the timing of spring plant growth, measured using a network of automated time‐lapse cameras distributed across the range of endangered Sierra Nevada bighorn sheep (Ovis canadensis sierrae) in California, USA. We tracked greenness of individual plants across 2 years to compare spatial patterns of forage phenology in snowy and drought years. Green‐up timing was derived for individual plants across the camera network and compared with local estimates of green‐up timing from satellite data. Satellite‐derived estimates of green‐up timing showed strong correspondence with camera‐derived estimates in areas with dense vegetation cover and weak correspondence in areas with sparse vegetation cover. Daily time‐lapse imagery revealed consistent variation in green‐up timing across elevation, both among latitudinal zones and among individual plant species. Green‐up timing was earlier in 2020 than in 2019, reflecting differences in the end of the snowy season. Because bighorn forage seasonally on alpine species with a brief growing period, spring migration of bighorn may be linked to variation in snowmelt and plant growth across elevational gradients.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44936886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information 问题信息
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-04-01 DOI: 10.1002/rse2.280
{"title":"Issue Information","authors":"","doi":"10.1002/rse2.280","DOIUrl":"https://doi.org/10.1002/rse2.280","url":null,"abstract":"","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43277761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spaceborne LiDAR for characterizing forest structure across scales in the European Alps 星载激光雷达用于描述欧洲阿尔卑斯山不同尺度的森林结构
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-03-26 DOI: 10.1002/rse2.330
Lisa Mandl, A. Stritih, R. Seidl, C. Ginzler, Cornelius Senf
{"title":"Spaceborne\u0000 LiDAR\u0000 for characterizing forest structure across scales in the European Alps","authors":"Lisa Mandl, A. Stritih, R. Seidl, C. Ginzler, Cornelius Senf","doi":"10.1002/rse2.330","DOIUrl":"https://doi.org/10.1002/rse2.330","url":null,"abstract":"The launch of NASA's Global Ecosystem Dynamics Investigation (GEDI) mission in 2018 opens new opportunities to quantitatively describe forest ecosystems across large scales. While GEDI's height‐related metrics have already been extensively evaluated, the utility of GEDI for assessing the full spectrum of structural variability—particularly in topographically complex terrain—remains incompletely understood. Here, we quantified GEDI's potential to estimate forest structure in mountain landscapes at the plot and landscape level, with a focus on variables of high relevance in ecological applications. We compared five GEDI metrics including relative height percentiles, plant area index, cover and understory cover to airborne laser scanning (ALS) data in two contrasting mountain landscapes in the European Alps. At the plot level, we investigated the impact of leaf phenology and topography on GEDI's accuracy. At the landscape‐scale, we evaluated the ability of GEDIs sample‐based approach to characterize complex mountain landscapes by comparing it to wall‐to‐wall ALS estimates and evaluated the capacity of GEDI to quantify important indicators of ecosystem functions and services (i.e., avalanche protection, habitat provision, carbon storage). Our results revealed only weak to moderate agreement between GEDI and ALS at the plot level (R2 from 0.03 to 0.61), with GEDI uncertainties increasing with slope. At the landscape‐level, however, the agreement between GEDI and ALS was generally high, with R2 values ranging between 0.51 and 0.79. Both GEDI and ALS agreed in identifying areas of high avalanche protection, habitat provision, and carbon storage, highlighting the potential of GEDI for landscape‐scale analyses in the context of ecosystem dynamics and management.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44322751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Combining unmanned aerial vehicles and satellite imagery to quantify areal extent of intertidal brown canopy‐forming macroalgae 结合无人机和卫星图像来量化潮间带棕色树冠形成大型藻类的面积范围
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-03-10 DOI: 10.1002/rse2.327
Pippa H. Lewis, B. Roberts, P. Moore, Samuel Pike, A. Scarth, K. Medcalf, I. Cameron
{"title":"Combining unmanned aerial vehicles and satellite imagery to quantify areal extent of intertidal brown canopy‐forming macroalgae","authors":"Pippa H. Lewis, B. Roberts, P. Moore, Samuel Pike, A. Scarth, K. Medcalf, I. Cameron","doi":"10.1002/rse2.327","DOIUrl":"https://doi.org/10.1002/rse2.327","url":null,"abstract":"Brown macroalgae habitats provide a range of ecosystem services, offering coastal protection, supporting and increasing biodiversity, and more recently have been recognized for their potential role as blue carbon habitats. Consequently, accurate areal estimates of these habitats are vitally important. Satellite imagery is often utilized for areal estimates of vegetated habitats due to their ability to capture vast areas but are disadvantaged by their lower resolution. In contrast, imagery collected by unmanned aerial vehicles (UAV) provide high‐resolution datasets but are unable to cover the necessary spatial scale required for calculating areal estimates at regional, national or international scales. This study successfully and accurately corrects the outputs from low‐resolution Sentinel 2 imagery to the standard of high‐resolution UAV imagery by using a novel brown algae index and a simple regression model to provide accurate spatial estimates. This model was applied to rocky shores across Wales, UK to predict a spatial extent of 6.2 km2 for three fucoid macroalgae species; Ascophyllum nodosum, Fucus vesiculosus and F. serratus. The regression model was validated in two ways. First, the data used to create the regression model was split to train and test (50:50) the model, with a root mean square error of ~8%–14%. Secondly, spatial estimates of fucoids in independent aerial imagery were assessed using aerial photography interpretation and compared to that of the regression model (7% difference). The carbon standing stock of fucoids calculated from the spatial estimate (6.2 km2) was found to be significantly lower than that of other marine carbon stores, indicating that fucoids do not significantly contribute as a blue carbon habitat based on biomass alone. This study produces a robust and accurate remote sensing technique to estimate spatial extent of macroalgae at large spatial scales, with possible worldwide applicability.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47364746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Seabird surveillance: combining CCTV and artificial intelligence for monitoring and research 海鸟监测:CCTV和人工智能相结合进行监测和研究
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-03-07 DOI: 10.1002/rse2.329
J. Hentati‐Sundberg, Agnes B. Olin, Sheetal Reddy, Per‐Arvid Berglund, Erik Svensson, M. Reddy, Siddharta Kasarareni, A. Carlsen, Matilda Hanes, Shreyash Kad, O. Olsson
{"title":"Seabird surveillance: combining CCTV and artificial intelligence for monitoring and research","authors":"J. Hentati‐Sundberg, Agnes B. Olin, Sheetal Reddy, Per‐Arvid Berglund, Erik Svensson, M. Reddy, Siddharta Kasarareni, A. Carlsen, Matilda Hanes, Shreyash Kad, O. Olsson","doi":"10.1002/rse2.329","DOIUrl":"https://doi.org/10.1002/rse2.329","url":null,"abstract":"Ecological research and monitoring need to be able to rapidly convey information that can form the basis of scientifically sound management. Automated sensor systems, especially if combined with artificial intelligence, can contribute to such rapid high‐resolution data retrieval. Here, we explore the prospects of automated methods to generate insights for seabirds, which are often monitored for their high conservation value and for being sentinels for marine ecosystem changes. We have developed a system of video surveillance combined with automated image processing, which we apply to common murres Uria aalge. The system uses a deep learning algorithm for object detection (YOLOv5) that has been trained on annotated images of adult birds, chicks and eggs, and outputs time, location, size and confidence level of all detections, frame‐by‐frame, in the supplied video material. A total of 144 million bird detections were generated from a breeding cliff over three complete breeding seasons (2019–2021). We demonstrate how object detection can be used to accurately monitor breeding phenology and chick growth. Our automated monitoring approach can also identify and quantify rare events that are easily missed in traditional monitoring, such as disturbances from predators. Further, combining automated video analysis with continuous measurements from a temperature logger allows us to study impacts of heat waves on nest attendance in high detail. Our automated system thus produces comparable, and in several cases significantly more detailed, data than those generated from observational field studies. By running in real time on the camera streams, it has the potential to supply researchers and managers with high‐resolution up‐to‐date information on seabird population status. We describe how the system can be modified to fit various types of ecological research and monitoring goals and thereby provide up‐to‐date support for conservation and ecosystem management.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43254246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Modeling approach for coastal dune habitat detection on coastal ecosystems combining very high‐resolution UAV imagery and field survey 高分辨率无人机影像与野外调查相结合的海岸带沙丘生境探测建模方法
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-02-09 DOI: 10.1002/rse2.308
E. Agrillo, F. Filipponi, R. Salvati, Alice Pezzarossa, L. Casella
{"title":"Modeling approach for coastal dune habitat detection on coastal ecosystems combining very high‐resolution UAV imagery and field survey","authors":"E. Agrillo, F. Filipponi, R. Salvati, Alice Pezzarossa, L. Casella","doi":"10.1002/rse2.308","DOIUrl":"https://doi.org/10.1002/rse2.308","url":null,"abstract":"Earth observation (EO) data, derived from remote sensing and unmanned aerial vehicle (UAV), have been recently demonstrated to be essential tools for the ecosystem monitoring and habitat mapping, combining high technological and methodological procedures for applied ecology. However, research based on EO data analyses often tend to focus on image processing techniques, neglecting the development of a detailed sampling design scheme needed for an exhaustive habitat detection. This paper shows the results of a novel approach for mapping coastal dune habitats at a fine scale, using a supervised machine learning model, through the combination of vegetation plot sampling scheme, synergic use of multi‐sensor spectral imagery (UAV‐VHR) and environmental predictors (e.g., LiDAR), object‐based image analysis, and landscape metrics analysis. Proposed approach was tested in a protected area, established to preserve notable habitats along the Italian Tyrrhenian coast. A detailed sampling scheme was designed and carried out during spring and summer of 2019, combining simultaneously UAV flight acquisition and field vegetation survey data, collected at high precision positioning. The calibrated classification model achieved an overall accuracy of 78.6% (standard error 4.33), allowing us to accurately classify and map five coastal habitats, according to EUNIS (European Nature Information System) classification, which were further verified through a fully independent validation field survey. Results demonstrate that VHR imageries, combined with specific field survey schemes, can be exploited to train classification models used for the detection of plant communities (i.e., meso‐habitat) and plant species at local scale. Our findings demonstrate that UAV‐VHR data is a valid tool to produce high spatial resolution information in sand beach ecosystems, giving ecology research a new way for responsive, timely, and cost‐effective ecosystem monitoring.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43827404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Colony‐nesting gulls restrict activity levels of a native top carnivore during the breeding season 在繁殖季节,群体筑巢的海鸥限制了当地顶级食肉动物的活动水平
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-02-06 DOI: 10.1002/rse2.326
Steven Guidos, J. van Dijk, Geir H. R. Systad, A. Landa
{"title":"Colony‐nesting gulls restrict activity levels of a native top carnivore during the breeding season","authors":"Steven Guidos, J. van Dijk, Geir H. R. Systad, A. Landa","doi":"10.1002/rse2.326","DOIUrl":"https://doi.org/10.1002/rse2.326","url":null,"abstract":"Although nesting in colonies can offer substantial reproductive benefits for many seabird species, increased visibility to predators remains a significant disadvantage for most colony‐breeders. To counteract this, some seabird species have evolved aggressive nest defense strategies to protect vulnerable eggs and chicks. Here, we used an experimental approach to test whether colony inhabitance by breeding gulls Larus spp. in western Norway impacts visitation rates of a native, mammalian predator, the Eurasian otter Lutra lutra during the breeding season. Camera traps were placed inside of and on the periphery of seabird colonies prior to the breeding season and left to run for one continuous year. Sighting frequency of otters on these cameras was compared to a control region free of gull nesting. We found that otter activity was significantly reduced in the colonies when gulls were incubating and rearing chicks, compared to time periods when gulls were building nests and absent from the colonies. Rhythmic activity patterns did not seem to be significantly impacted by the presence of gulls. This study provides clear evidence that certain colony‐nesting species can have a direct, negative impact on visitation rates of a native carnivore. Seasonal carnivore activity patterns are likely to be highly dependent on differing nesting strategies and level of nest defense by seabirds.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42176626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information 问题信息
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-02-01 DOI: 10.1002/rse2.279
{"title":"Issue Information","authors":"","doi":"10.1002/rse2.279","DOIUrl":"https://doi.org/10.1002/rse2.279","url":null,"abstract":"","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44787996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信