Chhandak Bagchi, Josh Medina, Duncan J. Irschick, Subhransu Maji, Fredrik Christiansen
{"title":"Automated extraction of right whale morphometric data from drone aerial photographs","authors":"Chhandak Bagchi, Josh Medina, Duncan J. Irschick, Subhransu Maji, Fredrik Christiansen","doi":"10.1002/rse2.70001","DOIUrl":null,"url":null,"abstract":"Aerial photogrammetry is a popular non‐invasive tool to measure the size, body morphometrics and body condition of wild animals. While the method can generate large datasets quickly, the lack of efficient processing tools can create bottlenecks that delay management actions. We developed a machine learning algorithm to automatically measure body morphometrics (body length and widths) of southern right whales (Eubalaena australis, SRWs) from aerial photographs (<jats:italic>n</jats:italic> = 8,958) collected by unmanned aerial vehicles in Australia. Our approach utilizes two Mask R‐CNN detection models to: (i) generate masks for each whale and (ii) estimate points along the whale's axis. We annotated a dataset of 468 images containing 638 whales to train our models. To evaluate the accuracy of our machine learning approach, we compared the model‐generated body morphometrics to manual measurements. The influence of picture quality (whale posture and water clarity) was also assessed. The model‐generated body length estimates were slightly negatively biased (median error of −1.3%), whereas the body volume estimates had a small (median error of 6.5%) positive bias. After correcting both biases, the resulting model‐generated body length and volume estimates had mean absolute errors of 0.85% (SD = 0.75) and 6.88% (SD = 6.57), respectively. The magnitude of the errors decreased as picture quality increased. When using the model‐generated data to quantify intra‐seasonal changes in body condition of SRW females, we obtained a similar slope parameter (−0.001843, SE = 0.000095) as derived from manual measurements (−0.001565, SE = 0.000079). This indicates that our approach was able to accurately capture temporal trends in body condition at a population level.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"54 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.70001","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aerial photogrammetry is a popular non‐invasive tool to measure the size, body morphometrics and body condition of wild animals. While the method can generate large datasets quickly, the lack of efficient processing tools can create bottlenecks that delay management actions. We developed a machine learning algorithm to automatically measure body morphometrics (body length and widths) of southern right whales (Eubalaena australis, SRWs) from aerial photographs (n = 8,958) collected by unmanned aerial vehicles in Australia. Our approach utilizes two Mask R‐CNN detection models to: (i) generate masks for each whale and (ii) estimate points along the whale's axis. We annotated a dataset of 468 images containing 638 whales to train our models. To evaluate the accuracy of our machine learning approach, we compared the model‐generated body morphometrics to manual measurements. The influence of picture quality (whale posture and water clarity) was also assessed. The model‐generated body length estimates were slightly negatively biased (median error of −1.3%), whereas the body volume estimates had a small (median error of 6.5%) positive bias. After correcting both biases, the resulting model‐generated body length and volume estimates had mean absolute errors of 0.85% (SD = 0.75) and 6.88% (SD = 6.57), respectively. The magnitude of the errors decreased as picture quality increased. When using the model‐generated data to quantify intra‐seasonal changes in body condition of SRW females, we obtained a similar slope parameter (−0.001843, SE = 0.000095) as derived from manual measurements (−0.001565, SE = 0.000079). This indicates that our approach was able to accurately capture temporal trends in body condition at a population level.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.