利用声学量化夜间鸟类迁徙:机遇与挑战

IF 3.9 2区 环境科学与生态学 Q1 ECOLOGY
Siméon Béasse, Louis Sallé, Paul Coiffard, Birgen Haest
{"title":"利用声学量化夜间鸟类迁徙:机遇与挑战","authors":"Siméon Béasse, Louis Sallé, Paul Coiffard, Birgen Haest","doi":"10.1002/rse2.433","DOIUrl":null,"url":null,"abstract":"Acoustic recordings have emerged as a promising tool to monitor nocturnal bird migration, as it can uniquely provide species‐level detection of migratory movements under the darkness of the night sky. This study explores the use of acoustics to quantify nocturnal bird migration across Europe, a region where research on the topic remains relatively sparse. We examine three migration intensity measures derived from acoustic recordings, that is, nocturnal flight call rates, nocturnal flight passage rates and species diversity, in the French Pyrenees in 2021 and 2022. To assess the effectiveness of these acoustic measurements, we compare them with migratory traffic rates estimated by a dedicated bird radar at three taxonomic levels: all birds, passerines and thrushes. We also test if weather conditions influence these relationships and whether combining acoustic data from multiple simultaneous sites improve the predictive performance. Nocturnal flight passage rates, that is, the number of estimated passing birds independent of call abundance, outperformed predictions using species diversity or nocturnal flight call rates. The predictive accuracy of the acoustics data increased with taxonomic detail: predicting thrush migration using acoustics was far more accurate (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 63%) than for passerines (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 29%) or birds in general (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 27%). Prediction using simultaneous acoustics measurements from several sites strongly reduced the uncertainty of the quantification. We did not find any evidence that weather conditions affected the predictive performance of the acoustics data. Accurate, automated monitoring of migratory flows is crucial as many bird species face steep population declines. Acoustic monitoring offers valuable species‐specific insights, making it a powerful tool for nocturnal bird migration studies. This study advances the integration of acoustic methods into bird monitoring by testing their benefits and limitations and provides recommendations and guidelines to enhance the effectiveness of future studies using acoustic data.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"13 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying nocturnal bird migration using acoustics: opportunities and challenges\",\"authors\":\"Siméon Béasse, Louis Sallé, Paul Coiffard, Birgen Haest\",\"doi\":\"10.1002/rse2.433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acoustic recordings have emerged as a promising tool to monitor nocturnal bird migration, as it can uniquely provide species‐level detection of migratory movements under the darkness of the night sky. This study explores the use of acoustics to quantify nocturnal bird migration across Europe, a region where research on the topic remains relatively sparse. We examine three migration intensity measures derived from acoustic recordings, that is, nocturnal flight call rates, nocturnal flight passage rates and species diversity, in the French Pyrenees in 2021 and 2022. To assess the effectiveness of these acoustic measurements, we compare them with migratory traffic rates estimated by a dedicated bird radar at three taxonomic levels: all birds, passerines and thrushes. We also test if weather conditions influence these relationships and whether combining acoustic data from multiple simultaneous sites improve the predictive performance. Nocturnal flight passage rates, that is, the number of estimated passing birds independent of call abundance, outperformed predictions using species diversity or nocturnal flight call rates. The predictive accuracy of the acoustics data increased with taxonomic detail: predicting thrush migration using acoustics was far more accurate (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 63%) than for passerines (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 29%) or birds in general (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 27%). Prediction using simultaneous acoustics measurements from several sites strongly reduced the uncertainty of the quantification. We did not find any evidence that weather conditions affected the predictive performance of the acoustics data. Accurate, automated monitoring of migratory flows is crucial as many bird species face steep population declines. Acoustic monitoring offers valuable species‐specific insights, making it a powerful tool for nocturnal bird migration studies. This study advances the integration of acoustic methods into bird monitoring by testing their benefits and limitations and provides recommendations and guidelines to enhance the effectiveness of future studies using acoustic data.\",\"PeriodicalId\":21132,\"journal\":{\"name\":\"Remote Sensing in Ecology and Conservation\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing in Ecology and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rse2.433\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.433","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

声学记录已经成为监测夜间鸟类迁徙的一种很有前途的工具,因为它可以在黑暗的夜空下独特地提供物种水平的迁徙运动检测。这项研究探索了声学的使用来量化整个欧洲夜间鸟类的迁徙,在这个地区,关于这个主题的研究仍然相对较少。我们研究了2021年和2022年法国比利牛斯山脉夜间飞行呼叫率、夜间飞行通过率和物种多样性这三种来自声学记录的迁徙强度指标。为了评估这些声学测量的有效性,我们将它们与专用鸟类雷达在三个分类水平上估计的迁徙交通率进行了比较:所有鸟类,雀形目和画眉。我们还测试了天气条件是否会影响这些关系,以及结合多个同时站点的声学数据是否可以提高预测性能。夜间飞行通过率,即独立于呼叫丰度的估计通过鸟类的数量,优于使用物种多样性或夜间飞行通过率的预测。声学数据的预测精度随着分类学细节的增加而增加:利用声学预测画眉迁徙的准确性(R2 = 63%)远远高于雀形目(R2 = 29%)或一般鸟类(R2 = 27%)。利用几个地点同时进行的声学测量进行预测,大大降低了量化的不确定性。我们没有发现任何证据表明天气条件会影响声学数据的预测性能。由于许多鸟类面临数量急剧下降,对迁徙流动进行准确、自动化的监测至关重要。声学监测提供了有价值的物种特定的见解,使其成为夜间鸟类迁徙研究的有力工具。本研究通过测试声学方法的优点和局限性,促进了声学方法与鸟类监测的整合,并为提高声学数据研究的有效性提供了建议和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying nocturnal bird migration using acoustics: opportunities and challenges
Acoustic recordings have emerged as a promising tool to monitor nocturnal bird migration, as it can uniquely provide species‐level detection of migratory movements under the darkness of the night sky. This study explores the use of acoustics to quantify nocturnal bird migration across Europe, a region where research on the topic remains relatively sparse. We examine three migration intensity measures derived from acoustic recordings, that is, nocturnal flight call rates, nocturnal flight passage rates and species diversity, in the French Pyrenees in 2021 and 2022. To assess the effectiveness of these acoustic measurements, we compare them with migratory traffic rates estimated by a dedicated bird radar at three taxonomic levels: all birds, passerines and thrushes. We also test if weather conditions influence these relationships and whether combining acoustic data from multiple simultaneous sites improve the predictive performance. Nocturnal flight passage rates, that is, the number of estimated passing birds independent of call abundance, outperformed predictions using species diversity or nocturnal flight call rates. The predictive accuracy of the acoustics data increased with taxonomic detail: predicting thrush migration using acoustics was far more accurate (R2 = 63%) than for passerines (R2 = 29%) or birds in general (R2 = 27%). Prediction using simultaneous acoustics measurements from several sites strongly reduced the uncertainty of the quantification. We did not find any evidence that weather conditions affected the predictive performance of the acoustics data. Accurate, automated monitoring of migratory flows is crucial as many bird species face steep population declines. Acoustic monitoring offers valuable species‐specific insights, making it a powerful tool for nocturnal bird migration studies. This study advances the integration of acoustic methods into bird monitoring by testing their benefits and limitations and provides recommendations and guidelines to enhance the effectiveness of future studies using acoustic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing in Ecology and Conservation
Remote Sensing in Ecology and Conservation Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
9.80
自引率
5.50%
发文量
69
审稿时长
18 weeks
期刊介绍: emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students. Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信