{"title":"Pharmacological Approaches and Innovative Strategies for Individualized Patient Care.","authors":"Amnesh Kumar Verma, Kuldeep Singh, Jeetendra Kumar Gupta, Shivendra Kumar, Divya Jain","doi":"10.2174/0118722083359334250116063638","DOIUrl":"https://doi.org/10.2174/0118722083359334250116063638","url":null,"abstract":"<p><p>Personalized medicine is an evolving paradigm that aims to tailor therapeutic interventions to individual patient characteristics. With a growing understanding of the genetic, epigenetic, and molecular mechanisms underlying diseases, tailored therapies are becoming more feasible and effective. This review highlights the significant advancements in personalized medicine, focusing specifically on pharmacological strategies. The article explores the integration of genomics, transcriptomics, proteomics, and metabolomics in drug development and therapy optimization. Pharmacogenomics, the customization of drug therapy based on an individual's genetic makeup, receives particular emphasis. This leads to the identification of specific biomarkers that can predict therapeutic response, drug toxicity, and susceptibility to various diseases. Together with computational tools and artificial intelligence, these advancements contribute to tailored treatment plans for patients with conditions such as cancer, cardiovascular diseases, and neurological disorders. We also highlight the challenges and ethical considerations in implementing personalized medicine, such as data privacy, cost-effectiveness, and accessibility. We outline future prospects and ongoing research in this field, highlighting the importance of collaborative efforts between researchers, clinicians, pharmacists, and regulatory authorities.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fatma Yakoub, Hanem Hassan, Samah Mamdouh, Tarek Aboushousha, Fatma B Rashidi, Mohamed A El-Desouky
{"title":"Exploring the Therapeutic Potential of TROP2 Gene Silencing in Hepatocellular Carcinoma.","authors":"Fatma Yakoub, Hanem Hassan, Samah Mamdouh, Tarek Aboushousha, Fatma B Rashidi, Mohamed A El-Desouky","doi":"10.2174/0118722083352578241225130252","DOIUrl":"https://doi.org/10.2174/0118722083352578241225130252","url":null,"abstract":"<p><strong>Background: </strong>Trophoblast Cell Surface Antigen 2 (Trop2) is a transmembrane glycoprotein that has been implicated in the progression and metastasis of various cancers, including hepatocellular carcinoma (HCC). Targeting Trop2 expression may represent a promising approach for the development of novel therapeutic strategies.</p><p><strong>Objectives: </strong>This study aimed to investigate the effects of Trop2 knockdown using small interfering RNA (siRNA) on the phenotypic and molecular characteristics of the HepG2 liver cancer cell line.</p><p><strong>Methods: </strong>HepG2 cells were transfected with different concentrations of Trop2-targeting siRNA (3 nM, 5 nM, and 7 nM) at various time intervals (6, 24, and 48 hrs). The expression of Trop2 was assessed by real-time PCR before and after transfection. The impact of Trop2 knockdown on cell apoptosis, migration, morphology, histopathological features, wound-healing assays, and microscopic analysis was examined. Additionally, the expression of the TPM1 gene was evaluated using immunohistochemical analysis.</p><p><strong>Results: </strong>Trop2 mRNA level was significantly decreased in HepG2 cells in a time- and concentration-dependent manner following siRNA transfection. The downregulation of Trop2 resulted in a marked increase in apoptosis, a reduction in cell migration, and alterations in cell morphology and histopathological characteristics. Furthermore, the expression of the TPM1 gene was found to be upregulated in Trop2-knockdown HepG2 cells.</p><p><strong>Conclusion: </strong>These results highlight the potential of Trop2 as a therapeutic target for the management of hepatocellular carcinoma.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gyanendra Tripathi, Akhtar Hussain, Irum, Saba Firdaus, Priyanka Dubey, Suhail Ahmad, Mohammad Ashfaque, Vishal Mishra, Alvina Farooqui
{"title":"Current Scenario and Global Perspective of Sustainable Algal Biofuel Production.","authors":"Gyanendra Tripathi, Akhtar Hussain, Irum, Saba Firdaus, Priyanka Dubey, Suhail Ahmad, Mohammad Ashfaque, Vishal Mishra, Alvina Farooqui","doi":"10.2174/0118722083322399240927051315","DOIUrl":"10.2174/0118722083322399240927051315","url":null,"abstract":"<p><p>Industrialization and globalization have increased the demand for petroleum products that has increased a load on natural energy resources. The escalating fossil fuel utilization has resulted in surpassing the Earth's capacity to absorb greenhouse gases, necessitating the exploration of sustainable bioenergy alternatives to mitigate emissions. Biofuels, derived from algae, offer promising solutions to alleviate fossil fuel dependency. Algae, often regarded as third-generation biofuels, present numerous advantages owing to their high biomass production rates. While algae have been utilized for their bioactive compounds, their capability as biomass for the production of biofuel has gained traction among researchers. Various biofuels such as bio-hydrogen, bio-methane, bio-ethanol, bio-oil, and bio-butanol can be derived from algae through diverse processes like fermentation, photolysis, pyrolysis, and transesterification. Despite the enormous commercial potential of algae-derived biofuels, challenges such as high cultivation costs persist. However, leveraging the utilization of algae byproducts could improve economic viability of biofuel production. Moreover, algae derived biofuels offer environmental sustainability, cost-effectiveness, and waste reduction benefits, promising novel opportunities for a more sustainable energy future. Moreover, advancements in the field could lead to patents that drive innovation and commercialization in algae-based biofuel technologies.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":" ","pages":"276-300"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phytochemical Analysis and Antimicrobial Potential of <i>Parthenium hysterophorous</i> and <i>Lantana camara</i>.","authors":"Aliya Firdaus, Syed Khalida Izhar, Shazia Qamar, Arshi Siddiqui, Uzma Afaq","doi":"10.2174/0118722083316748240821151703","DOIUrl":"10.2174/0118722083316748240821151703","url":null,"abstract":"<p><strong>Background: </strong><i>Parthenium hysterophorous</i> and <i>Lantana camara</i> are notable for their significant phytochemical and antimicrobial properties. Advancements in phytochemical research have led to the development of novel formulations and products derived from <i>P. hysterophorus</i> and <i>L. camara</i>. For instance, patent extracts from these plants have been utilized in the formulation of pharmaceutical drugs, herbal supplements, cosmeceuticals, and agricultural products. <i>P. hysterophorous</i>, commonly known as Santa Maria feverfew or Congress grass, contains various bioactive compounds like terpenoids, flavonoids, phenolics, and alkaloids.These compounds are the key to its medicinal properties, particularly its antimicrobial activity. On the other hand, <i>L. camara</i>, often referred to as wild sage, is rich in phytochemicals such as terpenoids, flavonoids, and alkaloid glycosides.</p><p><strong>Methods: </strong><i>P. hysterophorous</i> and <i>L. camara</i> plants selected and checking their antimicrobial activity by agar well diffusion method.</p><p><strong>Results: </strong>In our study, we found that the leaf extract of <i>P. hysterophorous</i> exhibited the most potent antibacterial activity against <i>E. coli. P. hysterophorous</i> exhibited the most potent antifungal activity against <i>A. niger</i> and <i>T. viride</i>, with a diameter of inhibition zone measuring 12 mm, followed by <i>A. flavus</i> and <i>A. parasiticus</i>. In case of L. camara, the inhibitory zone ranging from 14 to 18 mm was detected against <i>S. abony, P. aeruginosa, E. coli</i>, and <i>K. pneumonia</i>. The leaf extract of the maximum zone of inhibition in case of <i>L. camara</i> was shown by <i>A. flavus</i> (12 mm).</p><p><strong>Conclusion: </strong>The present study suggests that these two weeds could be useful in the development of bactericides and fungicides.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":" ","pages":"251-259"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aliya Firdaus, Mohd Hadi Yunus, Syed Khalida Izhar, Uzma Afaq
{"title":"Medicinal Plants in the Treatment of Respiratory Diseases and their Future Aspects.","authors":"Aliya Firdaus, Mohd Hadi Yunus, Syed Khalida Izhar, Uzma Afaq","doi":"10.2174/0118722083278561231212072408","DOIUrl":"10.2174/0118722083278561231212072408","url":null,"abstract":"<p><p>The utilization of medicinal plants in the treatment of respiratory diseases has a rich history dating back centuries. A vast body of research literature, including review articles, research papers, case studies, patents, and books, provides substantial evidence supporting the use of medicinal plants in the treatment of diseases and injuries. This study delves into the diverse range of plant species known for their therapeutic properties, with a specific focus on their applications in respiratory health. Medicinal plants have played a crucial role as a source of ingredients for medications and the synthesis of drugs. Globally, over 35,000 plant species are employed for medicinal purposes, particularly in emerging countries where traditional medicine, predominantly plant-based pharmaceuticals, serves as a primary healthcare resource. This review highlights the significance of medicinal plants, such as aloe, ginger, turmeric, tulsi, and neem, in treating a wide array of common respiratory ailments. These plants contain bioactive compounds, including tannins, alkaloids, sugars, terpenoids, steroids, and flavonoids, which have diverse therapeutic applications. Some medicinal plants, notably <i>Echinacea purpurea</i> and <i>Zingiber officinale</i>, exhibit potential for adjuvant symptomatic therapy in respiratory conditions, such as chronic obstructive pulmonary disease (COPD), bronchitis, asthma, the common cold, cough, and whooping cough. The leaves of medicinal plants like <i>Acacia torta, Ocimum sanctum, Mentha haplocalyx, Lactuca virosa, Convolvulus pluricaulis,</i> and <i>Acalypha indica</i> are commonly used to address pneumonia, bronchitis, asthma, colds, and cough. This review aims to shed light on specific medicinal plants with therapeutic value, providing valuable insights for researchers in the field of herbal medicine. These plants hold the potential to serve as novel therapeutic agents in the treatment of respiratory diseases.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":" ","pages":"2-18"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tatiana Duque Martins Ertner de Almeida, Diericon Sousa Cordeiro
{"title":"Open Innovation or Traditional Patenting Strategies to Efficiently Address Health Emergencies: How Patent Information was used Towards Effective Treatments for COVID-19.","authors":"Tatiana Duque Martins Ertner de Almeida, Diericon Sousa Cordeiro","doi":"10.2174/0118722083303431240528041945","DOIUrl":"10.2174/0118722083303431240528041945","url":null,"abstract":"<p><strong>Introduction/objective: </strong>During the 1150 days of COVID-19 pandemic there were great efforts to develop efficient treatments for the disease. After this long time, some drugs emerged as treatment for COVID-19. Some of them are new drugs, most of them, known drugs. These developments were triggered by information already available in patent documents. Pharmaceutical companies, therefore, rushed to conduct drugs evaluations and trials in order to deliver to the world a reasonable treatment that could reach the majority of its population. However, it is not immediately clear how companies operated to reach their goals. The ability of open innovation to achieve results assertively and faster than closed innovation strategies is questioned and therefore, it is questioned whether pharmaceutical companies use open innovation to face COVID-19.</p><p><strong>Methods: </strong>In this work, data available on patent databases were mined to inform about the scientific and technological panorama of selected drugs tested for COVID-19 treatment and to understand the perspectives of such developments during the pandemic.</p><p><strong>Results: </strong>This study evidenced that most treatments were based on known drugs, that some of the initially promising drugs were abandoned during the pandemic, and that it was able to inform if open innovation and collaborations were explored strategies.</p><p><strong>Conclusion: </strong>This study evidenced that the developments during COVID-19 were not based on open innovation by revealing a patent race towards the treatment development, but with practically no collaborations or information exchange between companies, universities, and research facilities.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":" ","pages":"142-160"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Actinobacteria: Smart Micro-Factories for The Health Sector.","authors":"Roohi, Naushin Bano","doi":"10.2174/0118722083300181240429072502","DOIUrl":"10.2174/0118722083300181240429072502","url":null,"abstract":"<p><p>Antibiotics are considered \"wonder drugs\" due to the fact that they are the most extensively utilised medication in the world. They are used to cure a broad spectrum of diseases and lethal infections. A variety of bacteria and fungi produce antibiotics as a result of secondary metabolism; however, their production is dominated by a special class of bacteria, namely Actinobacteria. Actinobacteria are gram-positive bacteria with high G+C content and unparalleled antibiotic-producing ability. They produce numerous polyenes, tetracyclines, β-lactams, macrolides, and peptides. Actinobacteria are ubiquitous in nature and are isolated from various sources, such as marine and terrestrial endophytes of plants and air. They are studied for their relative antibiotic-producing ability along with the mechanism that the antibiotics follow to annihilate the pathogenic agents that include bacteria, fungi, protozoans, helminths, etc. Actinobacteria isolated from endophytes of medicinal plants have amassed significant attention as they interfere with the metabolism of medicinal plants and acquire enormous benefits from it in the form of conspicuous novel antibiotic-producing ability. Actinobacteria is not only an antibiotic but also a rich source of anticancer compounds that are widely used owing to its remarkable tumorigenic potential. Today, amongst Actinobacteria, class Streptomyces subjugates the area of antibiotic production, producing 70% of all known antibiotics. The uniqueness of bioactive Actinobacteria has turned the attention of scientists worldwide in order to explore its potentiality as effective \"micronanofactories\". This study provides a brief overview of the production of antibiotics from Actinobacteria inhabiting patent environments and the methods involved in the screening of antibiotics.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":" ","pages":"85-98"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140958030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giselda Dos Santos Barros, Paula Dos Passos Menezes, Simone de Cassia Silva, Gabriel Francisco da Silva
{"title":"The Landscape of Products for Diabetic Peripheral Neuropathy: A Scientific and Patent Systematic Review.","authors":"Giselda Dos Santos Barros, Paula Dos Passos Menezes, Simone de Cassia Silva, Gabriel Francisco da Silva","doi":"10.2174/0118722083314714240820115610","DOIUrl":"10.2174/0118722083314714240820115610","url":null,"abstract":"<p><strong>Background: </strong>Diabetic peripheral neuropathy (DPN) is a complication of diabetes that occurs in 40 - 60 million individuals worldwide and is associated with other chronic diseases. However, there are no review studies that present the state-of- the- art and technologies developed to circumvent this important health problem.</p><p><strong>Materials and methods: </strong>This review was conducted based on scientific papers and patents. The papers were retrieved from Lilacs, PubMed, and Web of Science databases, and the patents from INPI, ESPACENET, WIPO, and GOOGLE PATENTS. Thus, a sample consisting of 14 scientific articles and 667 patents was analyzed.</p><p><strong>Results: </strong>From the analysis of the data, we drew an overview of the development of biomedical technologies for DPN and detected the pioneering spirit of China, the USA, and Japan in the area, with a focus on the treatment of DPN. Based on this, we carried out a SWOT analysis to help direct future efforts in the area, which should focus primarily on developing technologies for prevention, early diagnosis, and, above all, cure of the disease to reduce the important impact of this disease in various sectors of society.</p><p><strong>Conclusion: </strong>This study finds a concentration of diabetic peripheral neuropathy products, especially therapeutic drugs, in high-income countries. It highlights the need for global collaboration and strategic focus on therapeutic adherence and preventive strategies to effectively manage DPN.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":" ","pages":"221-243"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reza Afrisham, Vida Farrokhi, Roya Moradi, Shaban Alizadeh
{"title":"Comparison of the Characteristics of Circulating Small Extracellular Vesicles Isolated by Ultracentrifugation and a Commercial Kit.","authors":"Reza Afrisham, Vida Farrokhi, Roya Moradi, Shaban Alizadeh","doi":"10.2174/0118722083325164241015103217","DOIUrl":"10.2174/0118722083325164241015103217","url":null,"abstract":"<p><strong>Introduction: </strong>The market offers a wide range of extracellular vesicles (EVs) isolation products, but their lack of standardization is a concern. Therefore, it is important to carefully assess the quality of the EVs obtained using these products to patent the ideal method. In this study, we compared the EXOCIB kit with the ultracentrifuge method, which is considered the gold standard for small EV isolation.</p><p><strong>Methods: </strong>After overnight fasting, small plasma EVs were extracted from four individuals using both the ultracentrifuge and the EXOCIB kit methods. The pooled EVs were then compared for the presence of the cluster of differentiation 63 (CD63) protein using the western blot analysis, and their size and zeta potential were performed by Dynamic Light Scattering (DLS). In addition, the size and morphology of small EVs were determined by using the Transmission Electron Microscopy (TEM) technique.</p><p><strong>Results: </strong>An average hydrodynamic size of 135.7 nm and a zeta potential of -6.33 Mv at 25°C was found for small EVs isolated by the ultracentrifuge, whereas the kit method resulted in small EVs with a hydrodynamic size of 102.8 nm and a zeta potential of -0.907. Notably, the size of the particles in the kit samples was smaller compared to those obtained through the ultracentrifuge (P < 0.001). The western blot method confirmed the expression of CD63 in both methods, so the ultracentrifuge yielded small EVs with a higher level of purity compared to the kit-based approach (P = 0.036).</p><p><strong>Conclusion: </strong>The DLS findings revealed the existence of vesicles within the appropriate size range for small EVs like exosomes in both isolation techniques. The results of the western blot analysis, in conjunction with DLS, displayed that the ultracentrifuge method extracted small EVs with a greater degree of purity than the kit-based approach.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":" ","pages":"346-353"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carvacrol: Innovative Synthesis Pathways and Overview of its Patented Applications.","authors":"Reda El Boukhari, Ahmed Fatimi","doi":"10.2174/0118722083292888240223094707","DOIUrl":"10.2174/0118722083292888240223094707","url":null,"abstract":"<p><strong>Aim: </strong>This research concerns the patentability of carvacrol; it could be helpful for researchers to easily identify any innovation in the biotechnological application of this monoterpene as well as other similar compounds.</p><p><strong>Background: </strong>Like thyme or oregano, several plants in the Lamiaceae family produce carvacrol. It is one of the secondary metabolites with several biological activities, including the improvement in plants' resistance and their protection. Carvacrol has many chemical properties, such as antioxidant and anti-microbial, which have made it interesting for multiple biotechnological applications in the fields of food, feed, pharmacology, and cosmetology.</p><p><strong>Objective: </strong>We have made an attempt to demonstrate the value of carvacrol, first by studying quantitative data from patent documents, and then, through some relevant patents, we have tried to highlight the various fields of innovation related to the properties of carvacrol.</p><p><strong>Methods: </strong>For the study, we have collected and sorted patent documents (i.e., patent applications and granted patents) from specialized patent databases, using \"carvacrol\" and some of its synonyms as keywords. The selected documents have included these keywords in their titles, abstracts, or claims. Then, thanks to patent analysis, we have tried to provide an overview of the useful properties of organic compounds.</p><p><strong>Results: </strong>We have shown that about 90% of the patent documents studied have been published in the 2000s. The number of publications, which is constantly increasing, demonstrates the growing interest in carvacrol. Although the applications of carvacrol are varied, the data on the IPC classification show that most published innovations are concerned with formulations in the fields of health, food, and feed. The study of the most relevant patents has allowed us to highlight some developments in the extraction and synthesis of carvacrol and some examples of patents that illustrate the wide possibilities offered by the exploitation of carvacrol. Thus, we have discussed its use in the cosmetic, pharmaceutical, food, and agricultural fields.</p><p><strong>Conclusion: </strong>Carvacrol is a natural compound with beneficial properties. Several applications using this monoterpene have already been patented in different fields. However, the evolution of patentability has grown this past year and revealed the potential of carvacrol in biotechnology.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":"19 1","pages":"53-68"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}