Yan Wu , Diyun Shu , Changran Geng , Ian Postuma , Xiaobin Tang , Yuan-Hao Liu
{"title":"Optimization of subcellular boron distribution measurement using UV-C imprint and neutron autoradiography in boron neutron capture therapy","authors":"Yan Wu , Diyun Shu , Changran Geng , Ian Postuma , Xiaobin Tang , Yuan-Hao Liu","doi":"10.1016/j.radmeas.2024.107351","DOIUrl":"10.1016/j.radmeas.2024.107351","url":null,"abstract":"<div><div>The subcellular distribution of boron drugs is crucial for studying radiobiological effects and microdosimetry in boron neutron capture therapy (BNCT). Accurately measuring this distribution remains a key objective. Building on the neutron autoradiography method combined with UV-C sensitization, this study aims to further optimize the approach and implement it at the BNCT center of Xiamen Humanity Hospital, with the expectation of applying it to future boron drug development. A dedicated irradiation device for neutron autoradiography was developed based on a clinical epithermal neutron beam. Optimal conditions for etching and UV-C cell imprints were investigated. After U251 cells were incubated with L-4-boronophenylalanin (BPA), cell imprints and track images were obtained under optimal conditions, and track distributions within cell structure were evaluated. The optimal etching condition involved using Potassium-Ethanol-Water (PEW) solution for 10 min, yielding track diameters of approximately 1 μm. After the poly allyl diglycol carbonate (PADC) with cultured cells was exposed to UV-C for 12 h, a clear cellular structure was imprinted on the PADC. The coupled track and cell structure images suggest that BPA may concentrate more around the U251 cell nucleus. The results demonstrate that the improved method can clearly distinguish tracks within the nucleus and cytoplasm in two-dimensional projections, enabling a more accurate evaluation of boron distribution at the subcellular scale.</div></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":"181 ","pages":"Article 107351"},"PeriodicalIF":1.6,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142759340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distribution of the dose response in a silicone-based radio-fluorogenic dosimeter and FWT-60 irradiated with monochromatic low-energy X-rays","authors":"Seiko Nakagawa , Takuya Maeyama , Akinari Yokoya , Maki Ohara , Noriko Usami","doi":"10.1016/j.radmeas.2024.107347","DOIUrl":"10.1016/j.radmeas.2024.107347","url":null,"abstract":"<div><div>In a previous work, we studied the electron spin resonance imaging of the alanine dosimeter irradiated with 0.36–1.8 kGy of 4- and 7-keV monochromatic X-rays and visualized the distribution of alanine radicals as a function of the penetration depth of the X-rays. Herein, the dose-response profile, as a function of the penetration depth, of a silicone-based gel dosimeter and FWT-60 film dosimeter was studied for comparison with the alanine dosimeter. A silicone-based gel dosimeter using dihydrorhodamine 6G (DHR6G) as a fluorescence probe was irradiated with 0–45 Gy of 10-keV monochromatic X-rays. The dose-response profile of the fluorescence was then investigated in detail to demonstrate the properties of low-energy X-ray irradiation. The fluorescence intensity at the surface was less than that inside when irradiated with a higher dose. The total fluorescence intensity per unit dose decreased with the increasing dose. These results were almost the same as those for the alanine dosimeter. At the surface, many of the radicals produced in the silicone elastomer would be lost due to radical-radical recombination before reacting with DHR6G owing to the high linear energy transfer nature of the low-energy X-ray irradiation. The FWT-60 film dosimeter was irradiated with 0.8–10 kGy of 2- and 4-keV monochromatic X-rays. For the FWT-60 film, the dose-response linearly increased with the dose, although its efficiency was far lower than that of the gel dosimeter. Additionally, the slope of the dose-response decreased with the decreasing photon energy. Some of the precursor molecules for the pigment will be directly ionized, transforming into the coloring agent in the FWT-60 film. Finally, the reaction mechanism to produce the pigment in each dosimeter would affect the dose-response properties of irradiation via low-energy X-rays.</div></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":"181 ","pages":"Article 107347"},"PeriodicalIF":1.6,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performances of the RadPro myOSL 4.0 whole body dosimeter","authors":"A. Pitzschke","doi":"10.1016/j.radmeas.2024.107346","DOIUrl":"10.1016/j.radmeas.2024.107346","url":null,"abstract":"<div><div>Our whole-body personal dosimeter using the RadPro myOSL 4.0 system was purchased to replace an existing personal dosimeter system based on TLDs. For accreditation purposes it was tested against the Swiss requirements on personal dosimetry and some IEC 62387 requirements. Various irradiations compatible to the ISO-4037 definitions were carried out in the irradiation facility of the institute. An internally developed dose calculation was used to further improve the results. We found that our dosimetry system fulfills all Swiss and the tested IEC 62387 requirements for <em>H</em><sub>p</sub>(10) and <em>H</em><sub>p</sub>(0.07).</div></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":"181 ","pages":"Article 107346"},"PeriodicalIF":1.6,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142759339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bui Ngoc Huy, Pham Van Dung, Huynh Thi Tinh, Nguyen Thi Ha, Nguyen Minh Duc
{"title":"Photon energy estimation in diagnostic radiology using OSL dosimeters: Experimental validation and Monte Carlo simulations","authors":"Bui Ngoc Huy, Pham Van Dung, Huynh Thi Tinh, Nguyen Thi Ha, Nguyen Minh Duc","doi":"10.1016/j.radmeas.2024.107342","DOIUrl":"10.1016/j.radmeas.2024.107342","url":null,"abstract":"<div><div>The EGSnrc Monte Carlo software toolkit was used to evaluate the energy response and estimate the photon energy based on the E3/E4 ratio for the InLight XA Optical Luminescence Dosimeters (OSLDs).</div><div>The InLight XA OSLDs were irradiated with Cs-137 source and ISO 4037-1 narrow-spectrum series X-ray qualities (N40, N60, N80, and N100). The virtual OSLDs on the surface of the PMMA phantom were constructed in EGSnrc, energy response and ratio E3/E4 of the dosimeters was determined and compared to the physical measurements.</div><div>Good agreement was found between the simulated and measurement approaches in estimating the photon energy with a percentage difference of less than 6%. The E3/E4 ratio from simulation, physical measurements, and microStar system showed very good agreement results with the maximum difference of 9.3% and 10.94%, respectively. Furthermore, the OSLDs energy response varied significantly at energy below 100 keV due to the photoelectric effect.</div><div>The results of this study identify and address the over-response of OSLDs to low-energy photons, offering correction factors to minimize errors, especially in diagnostic radiology applications. These findings have the potential to improve dose accuracy for patients and radiation workers by providing more precise photon energy estimations, particularly at lower energy ranges, such as in diagnostic X-rays. The function used to evaluate photon energy using E3/E4 ratio has a great influence on the accuracy of such algorithms. It also ensures that imaging equipment is properly calibrated for the specific energy ranges needed, enhancing diagnostic accuracy. Furthermore, precise dose measurements are essential for maintaining regulatory compliance and long-term patient exposure records, ultimately promoting safer and more effective radiological practices.</div></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":"180 ","pages":"Article 107342"},"PeriodicalIF":1.6,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploration of dosimetry characteristics of PVA/MWCNT-OH nanocomposite for intraoperative electron radiotherapy","authors":"Shahryar Malekie , Seyed Rashid Hosseini Aghdam , Seyed Mahmoud Reza Aghamiri , Armin Mosayebi , Suffian Mohamad Tajudin","doi":"10.1016/j.radmeas.2024.107345","DOIUrl":"10.1016/j.radmeas.2024.107345","url":null,"abstract":"<div><div>This study investigates the dosimetric properties of a Polyvinyl Alcohol/Multi-Walled Carbon Nanotube Hydroxyl (PVA/MWCNT-OH) composite intended for intraoperative electron radiotherapy (IOeRT). A dosimeter was fabricated using a 0.02 wt% MWCNT-OH nanocomposite, featuring a thickness of 2 mm and a diameter of 2 cm. The electric charge recorded during irradiation served as the response for this real-time dosimeter. The dosimetry type-testing criteria for IOeRT at 8 MeV were evaluated, encompassing aspects such as linearity of response, dose rate, bias polarity, repeatability, field size, and dependency on electron energy. To assess energy dependency, the dosimeter's response was measured at various energies including 6, 8, 10, and 12 MeV utilizing a LIAC dedicated IOeRT machine. The results indicated a linear correlation in the dosimeter's response across absorbed doses up to 17 Gy. Furthermore, the various type-testing evaluations demonstrated compliance with IEC 60731 standard, with the exception of energy dependency, which necessitates the application of a suitable correction factor.</div></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":"180 ","pages":"Article 107345"},"PeriodicalIF":1.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review of real time 2D dosimetry in external radiotherapy: Advancements and techniques","authors":"Luana de Freitas Nascimento , Alessia Gasparini","doi":"10.1016/j.radmeas.2024.107344","DOIUrl":"10.1016/j.radmeas.2024.107344","url":null,"abstract":"<div><div>The objective of this paper is to provide a comprehensive review of the advancements and techniques in real time two-dimensional (2D) dosimetry for external radiation therapy with emphasis in vivo dosimetry and patient specific quality assurance. External radiation therapy plays a crucial role in cancer treatment, delivering high-energy radiation beams to target tumours while minimizing damage to surrounding healthy tissues. Accurate dosimetry, as both the measurement of the dose and its delivered location, is paramount to ensure effective treatment outcomes and minimize potential side effects.</div><div>The planned content of this paper encompasses a thorough examination of the advancements made in 2D dosimetry techniques, including solid state and electronic systems. The evolution from traditional passive dosimetry to modern real time detectors, such as portal imaging, has revolutionized the field, offering enhanced precision, efficiency, and convenience. This review will discuss the principles, advantages, and limitations of these systems, along with their practical implementation and calibration procedures.</div><div>Furthermore, the paper will highlight novel technologies, such as luminescence coatings, for quality assurance (QA) and real-time dose verification during treatment. The use of innovative materials and designs in dosemeters, including high spatial resolution detectors and tissue-equivalent phantoms, will also be explored. Additionally, the incorporation of advanced data analysis techniques, such as machine/deep learning algorithms, for dose reconstruction and QA will be addressed.</div><div>The review will also explore the application of real time 2D dosimetry in modern clinical and pre-clinical modalities, including intensity-modulated radiation therapy and volumetric modulated arc therapy, stereotactic radiosurgery, image-guided radiation therapy, particle therapy, adaptive radiotherapy, electron and proton ultra-high dose rate therapy and very high energy electrons.</div><div>By providing an up-to-date overview of the state-of-the-art in real time 2D dosimetry in <em>vivo dosimetry</em> and patient specific quality assurance, this paper aims to inform and guide professionals in the field, facilitating the adoption of cutting-edge techniques and improving the accuracy and safety of external radiotherapy treatments.</div></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":"180 ","pages":"Article 107344"},"PeriodicalIF":1.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
María Martorell Ruiz , Roberto M. Sánchez Casanueva , Antonio Gañán Mora , José M. Fernández-Soto
{"title":"Clinical evaluation of a new device for acceptance testing of Ru-106 plaques in ophthalmic brachytherapy","authors":"María Martorell Ruiz , Roberto M. Sánchez Casanueva , Antonio Gañán Mora , José M. Fernández-Soto","doi":"10.1016/j.radmeas.2024.107343","DOIUrl":"10.1016/j.radmeas.2024.107343","url":null,"abstract":"<div><h3>Purpose</h3><div>Ophthalmic brachytherapy treats eye lesions by stitching plaques containing a radionuclide (e.g. Ru-106) onto the sclera. Compliance with quality assurance standards is crucial, but practical limitations complicate independent source strength measurement in clinical practice. In this article, a new prototype for acceptance testing of Ru-106 plaques is assayed to assess its suitability for a hospital's medical physics department.</div></div><div><h3>Methods and materials</h3><div>The system designed for Ru-106 plaque assessment includes a phantom basin fillable with water, a Si-diode for electrons coupled with an electrometer, type-dependent plaque holders and a micrometre gauge. Testing involved the measurement of three plaque types (CCA, CIB, COB) by six medical physics experts and trainees, the assessment of inter and intra-observer variability and the suitability for measurement at the reference point, 2 mm.</div></div><div><h3>Results</h3><div>Measured absorbed dose rates in water at 2 mm from the plaque surface demonstrated compatibility across all testers for the three plaques. Intra and inter-observer variability was minimal (1.0% and 1.3% of the measured value, respectively), confirming system robustness in terms of operator influence.</div></div><div><h3>Conclusions</h3><div>The system proves suitable for Ru-106 plaque acceptance testing ensuring accurate plaque positioning and dose rate verification at 2 mm. These findings confirm its potential as a support for compliance with quality assurance standards. These results are subject to the issue of the corresponding calibration certificate for the Si-diode.</div></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":"180 ","pages":"Article 107343"},"PeriodicalIF":1.6,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guldar Baubekova , Ruslan Assylbayev , Alise Podelinska , Viktor Seeman , Evgeni Shablonin , Evgeni Vasil'chenko , Aleksandr Lushchik
{"title":"About thermal stability of the F+ centers in MgO single crystals irradiated by fast neutrons or energetic Ar ions","authors":"Guldar Baubekova , Ruslan Assylbayev , Alise Podelinska , Viktor Seeman , Evgeni Shablonin , Evgeni Vasil'chenko , Aleksandr Lushchik","doi":"10.1016/j.radmeas.2024.107335","DOIUrl":"10.1016/j.radmeas.2024.107335","url":null,"abstract":"<div><div>Single crystals of MgO have been exposed to 70-MeV argon ions with varying fluence of 4 × 10<sup>12</sup>-3 × 10<sup>14</sup> cm<sup>−2</sup>. The dependence of radiation-induced optical absorption (RIOA) at 1.7–6.5 eV on irradiation fluence has been analyzed. The EPR signal of the <em>F</em><sup>+</sup> center in ion-irradiated crystal has been detected and via the EPR parameters proved to be the same as in well-studied neutron-irradiated MgO crystals. The precise isothermal annealing of the <em>F</em> <sup>+</sup> EPR signal has been performed for the first time in a temperature range of 400–1100 K for both a fast neutron irradiated (2.7 × 10<sup>18</sup> cm<sup>−2</sup>) and Ar-irradiated (3 × 10<sup>14</sup> cm<sup>−2</sup>) MgO crystals. In both cases, the <em>F</em> <sup>+</sup> EPR decay starts only above 700 K and ends at 950–1060 K, depending on irradiation type. Using the same stepwise annealing procedure, the changes in RIOA for ion-irradiated samples have also been analyzed and possible reasons for the discrepancy in the thermal behaviour of optical and EPR <em>F</em> <sup>+</sup> -absorption have been considered.</div></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":"180 ","pages":"Article 107335"},"PeriodicalIF":1.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ke Wang , Zhizeng Pan , Longxiang Yin , Haifeng Zhang , Yuchen Zou , Xionghui Fei
{"title":"Study on dosimetric characteristics of polycarbonate films irradiated by electron beam","authors":"Ke Wang , Zhizeng Pan , Longxiang Yin , Haifeng Zhang , Yuchen Zou , Xionghui Fei","doi":"10.1016/j.radmeas.2024.107333","DOIUrl":"10.1016/j.radmeas.2024.107333","url":null,"abstract":"<div><div>In this study, the dosimetric characteristics (thickness applicability, dose linear response, signal fading characteristic, in-batch consistency, readout reproducibility, humidity dependence, and electron energy response) of engineering polycarbonate films irradiated by electron beam were studied using spectrophotometry. The results show that polycarbonate films of various thicknesses exhibit good dose linearity within their corresponding wavelength ranges. Specifically, the dose capture range of 0.3 mm polycarbonate film spans from 950 Gy to 1000 kGy. After irradiation, the net absorbance of polycarbonate films showed an exponential decline, which was dose-dependent. The average absolute deviation of net absorbance for polycarbonate films produced within the same batch is 1.49% at 100 kGy. After 15 repeated absorbance measurements, the coefficient of variation in net absorbance for the polycarbonate films is less than 1%. Additionally, the radiation response of the polycarbonate film is affected by the environment relative humidity (during irradiation and post-irradiation storage). At the same dose of 3.5–20 MeV electron beam irradiation, the net absorbance response deviation of polycarbonate films remains below 2.26%. These results provide a comprehensive reference for detecting high doses of electron beams using engineering polycarbonate films.</div></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":"180 ","pages":"Article 107333"},"PeriodicalIF":1.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}