Yan Wu , Diyun Shu , Changran Geng , Ian Postuma , Xiaobin Tang , Yuan-Hao Liu
{"title":"Optimization of subcellular boron distribution measurement using UV-C imprint and neutron autoradiography in boron neutron capture therapy","authors":"Yan Wu , Diyun Shu , Changran Geng , Ian Postuma , Xiaobin Tang , Yuan-Hao Liu","doi":"10.1016/j.radmeas.2024.107351","DOIUrl":null,"url":null,"abstract":"<div><div>The subcellular distribution of boron drugs is crucial for studying radiobiological effects and microdosimetry in boron neutron capture therapy (BNCT). Accurately measuring this distribution remains a key objective. Building on the neutron autoradiography method combined with UV-C sensitization, this study aims to further optimize the approach and implement it at the BNCT center of Xiamen Humanity Hospital, with the expectation of applying it to future boron drug development. A dedicated irradiation device for neutron autoradiography was developed based on a clinical epithermal neutron beam. Optimal conditions for etching and UV-C cell imprints were investigated. After U251 cells were incubated with L-4-boronophenylalanin (BPA), cell imprints and track images were obtained under optimal conditions, and track distributions within cell structure were evaluated. The optimal etching condition involved using Potassium-Ethanol-Water (PEW) solution for 10 min, yielding track diameters of approximately 1 μm. After the poly allyl diglycol carbonate (PADC) with cultured cells was exposed to UV-C for 12 h, a clear cellular structure was imprinted on the PADC. The coupled track and cell structure images suggest that BPA may concentrate more around the U251 cell nucleus. The results demonstrate that the improved method can clearly distinguish tracks within the nucleus and cytoplasm in two-dimensional projections, enabling a more accurate evaluation of boron distribution at the subcellular scale.</div></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":"181 ","pages":"Article 107351"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Measurements","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350448724002993","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The subcellular distribution of boron drugs is crucial for studying radiobiological effects and microdosimetry in boron neutron capture therapy (BNCT). Accurately measuring this distribution remains a key objective. Building on the neutron autoradiography method combined with UV-C sensitization, this study aims to further optimize the approach and implement it at the BNCT center of Xiamen Humanity Hospital, with the expectation of applying it to future boron drug development. A dedicated irradiation device for neutron autoradiography was developed based on a clinical epithermal neutron beam. Optimal conditions for etching and UV-C cell imprints were investigated. After U251 cells were incubated with L-4-boronophenylalanin (BPA), cell imprints and track images were obtained under optimal conditions, and track distributions within cell structure were evaluated. The optimal etching condition involved using Potassium-Ethanol-Water (PEW) solution for 10 min, yielding track diameters of approximately 1 μm. After the poly allyl diglycol carbonate (PADC) with cultured cells was exposed to UV-C for 12 h, a clear cellular structure was imprinted on the PADC. The coupled track and cell structure images suggest that BPA may concentrate more around the U251 cell nucleus. The results demonstrate that the improved method can clearly distinguish tracks within the nucleus and cytoplasm in two-dimensional projections, enabling a more accurate evaluation of boron distribution at the subcellular scale.
期刊介绍:
The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.
Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.