Purinergic Signalling最新文献

筛选
英文 中文
Moxibustion pre-treatment attenuates seizure severity during status epilepticus and counteracts the proconvulsant function of the purinergic P2X7 receptor 艾灸预处理可减轻癫痫状态发作的严重程度并抵消嘌呤能P2X7受体的促惊厥功能
IF 3.5 4区 医学
Purinergic Signalling Pub Date : 2024-09-13 DOI: 10.1007/s11302-024-10050-x
Hong-Wei Zhang, Jia-Jia Li, Yulihan Tang, Mao-Lin Tian, Sheng Huang, Meng-Juan Sun
{"title":"Moxibustion pre-treatment attenuates seizure severity during status epilepticus and counteracts the proconvulsant function of the purinergic P2X7 receptor","authors":"Hong-Wei Zhang, Jia-Jia Li, Yulihan Tang, Mao-Lin Tian, Sheng Huang, Meng-Juan Sun","doi":"10.1007/s11302-024-10050-x","DOIUrl":"https://doi.org/10.1007/s11302-024-10050-x","url":null,"abstract":"<p>Moxibustion, traditional Chinese medicine treatment, involves the warming of specific acupuncture points of the body using ignited herbal materials. Evidence suggests beneficial effects of moxibustion in several brain diseases including epilepsy, however, whether moxibustion pretreatment impacts on seizures and what are the underlying mechanisms remains to be established. Evidence has suggested the purinergic ATP-gated P2X7 receptor (P2X7R) to be involved in the actions of moxibustion. Moreover, P2X7R signalling is now well established to contribute to long-lasting brain hyperexcitability underlying epilepsy development. Whether P2X7R signalling is involved in the seizure-reducing actions of moxibustion has not been investigated to date. For our studies we used C57BL/6 male mice that received moxibustion pre-treatments at the acupoints Zusanli (ST36) and Dazhui (GV14) once daily for either 7, 14, or 21 days. This was followed by an intraperitoneal injection of kainic acid (KA, 30 mg/kg) to induce status epilepticus. Behavioral changes during KA-induced status epilepticus were analyzed according to the Racine scale. Changes in electrographic seizures were analyzed via cortical implanted electroencephalogram (EEG) electrodes. While no effect on seizure severity was observed following 7 days of moxibustion pre-treatment, moxibustion pre-treatment at both ST36 and GV14 for 14 or 21 days significantly reduced KA-induced behavior seizures at a similar rate. Cortical EEG recordings showed that 14 days of moxibustion pre-treatments also reduced electrographic seizures, confirming the anticonvulsant actions of moxibustion pre-treatment. To determine whether moxibustion impacts the pro-convulsant actions of P2X7R signaling, mice were treated with the P2X7R agonist BzATP or P2X7R antagonist A438079. While treatment with the P2X7R agonist BzATP exacerbated seizure severity, treatment with the P2X7R antagonist reduced seizure severity. We further found that moxibustion pre-treatment attenuated epileptic seizures by counteracting the effects of BzATP. These results suggest that moxibustion pre-treatment at the acupoints ST36 and GV14 for 14 days has anti-epileptic effects, which may counteract the proconvulsant functions of the P2X7R.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":"5 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Schwann cells transplantation improves nerve injury and alleviates neuropathic pain in rats. 许旺细胞移植可改善大鼠神经损伤并减轻神经性疼痛。
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-09-06 DOI: 10.1007/s11302-024-10046-7
Wen-Jun Zhang, Xi Li, Jun-Xiang Liao, Dong-Xia Hu, Song Huang
{"title":"Schwann cells transplantation improves nerve injury and alleviates neuropathic pain in rats.","authors":"Wen-Jun Zhang, Xi Li, Jun-Xiang Liao, Dong-Xia Hu, Song Huang","doi":"10.1007/s11302-024-10046-7","DOIUrl":"https://doi.org/10.1007/s11302-024-10046-7","url":null,"abstract":"<p><p>The mechanism of neuropathic pain induced by nerve injury is complex and there are no effective treatment methods. P2X4 receptor expression is closely related to the occurrence of pain. Schwann cells (SCs) play a key protective role in the repair of peripheral nerve injury and myelin sheath regeneration. However, whether SCs can affect the expression of P2X4 receptor and play a role in pathological pain is still unclear. Therefore, this study investigated the effect of SCs on whether they can down regulate the expression of P2X4 receptor to affect pain. The results showed that in the neuropathic pain induced by sciatic nerve injury model, the expression of P2X4 receptor in spinal cord tissue was significantly increased and the pain sensation of rats was increased. While SCs transplantation could down regulate the expression of P2X4 receptors in spinal cord and increase the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of rats. These data indicate that SCs can reduce the expression of P2X4 receptors to alleviate neuropathic pain, indicating that SCs can mediate P2X4 receptor signalling as a new target for pain treatment.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrocytic adenosine A1 receptors: a new potential target for treating sepsis-associated encephalopathy. 星形胶质细胞腺苷 A1 受体:治疗败血症相关脑病的潜在新靶点
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-09-06 DOI: 10.1007/s11302-024-10049-4
Si-Le Liu, Yong Tang
{"title":"Astrocytic adenosine A<sub>1</sub> receptors: a new potential target for treating sepsis-associated encephalopathy.","authors":"Si-Le Liu, Yong Tang","doi":"10.1007/s11302-024-10049-4","DOIUrl":"https://doi.org/10.1007/s11302-024-10049-4","url":null,"abstract":"","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrocytic P2X7 receptor in retrosplenial cortex drives electroacupuncture analgesia. 后脾皮层星形胶质细胞 P2X7 受体驱动电针镇痛
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-09-02 DOI: 10.1007/s11302-024-10043-w
Wei Zhao, Si-Le Liu, Si-Si Lin, Ying Zhang, Chang Yu
{"title":"Astrocytic P2X7 receptor in retrosplenial cortex drives electroacupuncture analgesia.","authors":"Wei Zhao, Si-Le Liu, Si-Si Lin, Ying Zhang, Chang Yu","doi":"10.1007/s11302-024-10043-w","DOIUrl":"https://doi.org/10.1007/s11302-024-10043-w","url":null,"abstract":"<p><p>P2X7 receptor (P2X7R) has been found to contribute to the peripheral mechanism of acupuncture analgesia (AA). However, whether it plays an important role in central mechanism remains unknown. In this study, we aimed to reveal the role of astrocytic P2X7R in retrosplenial cortex (RSC) in AA and provide new evidence for underlying the central mechanism of AA. We applied the chemogenetic receptors hM3Dq to stimulate or hM4Di to inhibit astrocytes ligand clozapine-N-oxide (CNO) following injection of adeno-associated virus (AAV) into the bilateral RSC, or pharmacologically intervened in the activity of the purinergic receptor P2X7R. Current data indicated that chemogenetic inhibition of astrocytes or injection of P2X7R agonist Bz-ATP in the bilateral RSC significantly reverses the analgesic effect of electroacupuncture (EA) in formalin tests while the bilateral injection of the P2X7R antagonist A438079 alleviated formalin-induced nociceptive behavior. Additionally, chemogenetic suppression of astrocytic P2X7R by injection of AAV in the bilateral RSC decreased hind paw flinches induced by formalin in the mice. These findings indicate the participation of both astrocytes and P2X7R in the RSC in EA analgesic. Moreover, P2X7R on astrocytes in the RSC appears to play a critical role in the ability of EA to attenuate formalin-induced pain responses in mice.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of transcription factor function by purinergic signalling in cardiovascular diseases. 心血管疾病中嘌呤能信号对转录因子功能的调控。
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-08-31 DOI: 10.1007/s11302-024-10045-8
Hao Tang, Qihang Kong, Zhewei Zhang, Wenchao Wu, Lixing Yuan, Xiaojing Liu
{"title":"Regulation of transcription factor function by purinergic signalling in cardiovascular diseases.","authors":"Hao Tang, Qihang Kong, Zhewei Zhang, Wenchao Wu, Lixing Yuan, Xiaojing Liu","doi":"10.1007/s11302-024-10045-8","DOIUrl":"https://doi.org/10.1007/s11302-024-10045-8","url":null,"abstract":"<p><p>Cardiovascular diseases (CVDs), including hypertension, atherosclerosis, myocardial ischemia, and myocardial infarction, constitute the primary cause of mortality worldwide. Transcription factors play critical roles in the development of CVDs and contribute to the pathophysiology of these diseases by coordinating the transcription of many genes involved in inflammation, oxidative stress, angiogenesis, and glycolytic metabolism. One important regulator of hemostasis in both healthy and pathological settings has been identified as a purinergic signalling pathway. Research has demonstrated that several signalling networks implicated in the pathophysiology of CVDs are formed by transcription factors that are regulated by purinergic substances. Here, we briefly summarize the roles and mechanisms of the transcription factors regulated by purinergic pathways in various types of CVD. This information will be essential for discovering novel approaches for CVD treatment and prevention.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrocytic adenosine A2B receptors: a crucial player in brain function. 星形胶质细胞腺苷 A2B 受体:大脑功能的关键角色
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-08-10 DOI: 10.1007/s11302-024-10042-x
Cui-Yuan Chen, Yong Tang
{"title":"Astrocytic adenosine A<sub>2B</sub> receptors: a crucial player in brain function.","authors":"Cui-Yuan Chen, Yong Tang","doi":"10.1007/s11302-024-10042-x","DOIUrl":"https://doi.org/10.1007/s11302-024-10042-x","url":null,"abstract":"","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modafinil exerts anti-inflammatory and anti-fibrotic effects by upregulating adenosine A2A and A2B receptors. 莫达非尼通过上调腺苷A2A和A2B受体发挥抗炎和抗纤维化作用。
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-08-01 Epub Date: 2023-11-08 DOI: 10.1007/s11302-023-09973-8
Haiyan Li, Ji Aee Kim, Seong-Eun Jo, Huisu Lee, Kwan-Chang Kim, Shinkyu Choi, Suk Hyo Suh
{"title":"Modafinil exerts anti-inflammatory and anti-fibrotic effects by upregulating adenosine A<sub>2A</sub> and A<sub>2B</sub> receptors.","authors":"Haiyan Li, Ji Aee Kim, Seong-Eun Jo, Huisu Lee, Kwan-Chang Kim, Shinkyu Choi, Suk Hyo Suh","doi":"10.1007/s11302-023-09973-8","DOIUrl":"10.1007/s11302-023-09973-8","url":null,"abstract":"<p><p>Adenosine receptor (AR) suppresses inflammation and fibrosis by activating cyclic adenosine monophosphate (cAMP) signaling. We investigated whether altered AR expression contributes to the development of fibrotic diseases and whether A<sub>2A</sub>AR and A<sub>2B</sub>AR upregulation inhibits fibrotic responses. Primary human lung fibroblasts (HLFs) from normal (NHLFs) or patients with idiopathic pulmonary fibrosis (DHLF) were used for in vitro testing. Murine models of fibrotic liver or pulmonary disease were developed by injecting thioacetamide intraperitoneally, by feeding a high-fat diet, or by intratracheal instillation of bleomycin. Modafinil, which activates cAMP signaling via A<sub>2A</sub>AR and A<sub>2B</sub>AR, was administered orally. The protein amounts of A<sub>2A</sub>AR, A<sub>2B</sub>AR, and exchange protein directly activated by cAMP (Epac) were reduced, while collagen and α-smooth muscle actin (α-SMA) were elevated in DHLFs compared to NHLFs. In liver or lung tissue from murine models of fibrotic diseases, A<sub>2A</sub>AR and A<sub>2B</sub>AR were downregulated, but A<sub>1</sub>AR and A<sub>3</sub>AR were not. Epac amounts decreased, and amounts of collagen, α-SMA, K<sub>Ca</sub>2.3, and K<sub>Ca</sub>3.1 increased compared to the control. Modafinil restored the amounts of A<sub>2A</sub>AR, A<sub>2B</sub>AR, and Epac, and reduced collagen, α-SMA, K<sub>Ca</sub>2.3, and K<sub>Ca</sub>3.1 in murine models of fibrotic diseases. Transforming growth factor-β reduced the amounts of A<sub>2A</sub>AR, A<sub>2B</sub>AR, and Epac, and elevated collagen, α-SMA, K<sub>Ca</sub>2.3, and K<sub>Ca</sub>3.1 in NHLFs; however, these alterations were inhibited by modafinil. Our investigation revealed that A<sub>2A</sub>AR and A<sub>2B</sub>AR downregulation induced liver and lung fibrotic diseases while upregulation attenuated fibrotic responses, suggesting that A<sub>2A</sub>AR and A<sub>2B</sub>AR-upregulating agents, such as modafinil, may serve as novel therapies for fibrotic diseases.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"371-384"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71485344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
P2 X 7 receptor is a critical regulator of extracellular ATP-induced profibrotic genes expression in rat kidney: implication of transforming growth factor-β/Smad signaling pathway. 第2页 十、 7受体是细胞外ATP诱导的大鼠肾脏促纤维化基因表达的关键调节因子:转化生长因子-β/Smad信号通路的意义。
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-08-01 Epub Date: 2023-11-07 DOI: 10.1007/s11302-023-09977-4
Fatma Mounieb, Somaia A Abdel-Sattar, Amany Balah, El-Sayed Akool
{"title":"P2 X 7 receptor is a critical regulator of extracellular ATP-induced profibrotic genes expression in rat kidney: implication of transforming growth factor-β/Smad signaling pathway.","authors":"Fatma Mounieb, Somaia A Abdel-Sattar, Amany Balah, El-Sayed Akool","doi":"10.1007/s11302-023-09977-4","DOIUrl":"10.1007/s11302-023-09977-4","url":null,"abstract":"<p><p>This study was designed to investigate the potential of extracellular adenosine 5'-triphosphate (ATP) via the P2 X 7 receptor to activate the renal fibrotic processes in rats. The present study demonstrates that administration of ATP rapidly activated transforming growth factor-β (TGF-β) to induce phosphorylation of Smad-2/3. Renal connective tissue growth factor (CTGF) and tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA and protein expressions were also increased following ATP administration. A decrease in TGF-β amount in serum as well as renal Smad-2/3 phosphorylation was noticed in animals pre-treated with the specific antagonist of P2 X 7 receptor, A 438,079. In addition, a significant reduction in mRNA and protein expression of CTGF and TIMP-1were also observed in the kidneys of those animals. Collectively, the current findings demonstrate that ATP has the ability to augment TGF-β-mediated Smad-2/3 phosphorylation and enhance the expression of the pro-fibrotic genes, CTGF and TIMP-1, an effect that is largely mediated via P2 X 7 receptor.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"421-430"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303607/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71485345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumoral P2Y2 receptor modulates tumor growth and host anti-tumor immune responses in a syngeneic murine model of oral cancer. 肿瘤P2Y2受体在口腔癌同基因小鼠模型中调节肿瘤生长和宿主抗肿瘤免疫反应
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-08-01 Epub Date: 2023-08-12 DOI: 10.1007/s11302-023-09960-z
Kevin Muñoz Forti, Lucas T Woods, Kimberly J Jasmer, Jean M Camden, Gary A Weisman
{"title":"Tumoral P2Y<sub>2</sub> receptor modulates tumor growth and host anti-tumor immune responses in a syngeneic murine model of oral cancer.","authors":"Kevin Muñoz Forti, Lucas T Woods, Kimberly J Jasmer, Jean M Camden, Gary A Weisman","doi":"10.1007/s11302-023-09960-z","DOIUrl":"10.1007/s11302-023-09960-z","url":null,"abstract":"<p><p>Head and neck squamous cell carcinomas (HNSCCs) are a heterogenous group of tumors and among the top 10 most common cancers and they arise from the epithelial tissues of the mucosal surfaces of the oral cavity, oropharynx, and larynx. Aberrant purinergic signaling has been associated with various cancer types. Here, we studied the role of the P2Y<sub>2</sub> purinergic receptor (P2Y<sub>2</sub>R) in the context of oral cancer. We utilized bioinformatics analysis of deposited datasets to examine purinome gene expression in HNSCC tumors and cells lines and functionally characterized nucleotide-induced P2 receptor signaling in human FaDu and Cal27 and murine MOC2 oral cancer cell lines. Utilizing tumorigenesis assays with wild-type or P2ry2 knockout MOC2 cells we evaluated the role of P2Y<sub>2</sub>Rs in tumor growth and the host anti-tumor immune responses. Our data demonstrate that human and murine oral cancer cell lines express numerous P2 receptors, with the P2Y<sub>2</sub>R being highly expressed. Using syngeneic tumor grafts in wild-type mice, we observed that MOC2 tumors expressing P2Y<sub>2</sub>R were larger than P2Y<sub>2</sub>R<sup>-/-</sup> tumors. Wild-type MOC2 tumors contained a lower population of tumor-infiltrating CD11b<sup>+</sup>F4/80<sup>+</sup> macrophages and CD3<sup>+</sup> cells, which were revealed to be CD3<sup>+</sup>CD4<sup>+</sup>IFNγ<sup>+</sup> T cells, compared to P2Y<sub>2</sub>R<sup>-/-</sup> tumors. These results were mirrored when utilizing P2Y<sub>2</sub>R<sup>-/-</sup> mice, indicating that the changes in MOC2 tumor growth and to the host anti-tumor immune response were independent of host derived P2Y<sub>2</sub>Rs. Results suggest that targeted suppression of the P2Y<sub>2</sub>R in HNSCC cells in vivo, rather than systemic P2Y<sub>2</sub>R antagonism, may be a more effective treatment strategy for HNSCCs.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"359-370"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303632/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9984447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Caffeine reduces viability, induces apoptosis, inhibits migration and modulates the CD39/CD73 axis in metastatic cutaneous melanoma cells. 咖啡因降低转移性皮肤黑色素瘤细胞的活力,诱导细胞凋亡,抑制迁移并调节CD39/CD73轴。
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-08-01 Epub Date: 2023-09-28 DOI: 10.1007/s11302-023-09967-6
Daiane Manica, Gilnei Bruno da Silva, Jussara de Lima, Joana Cassol, Paula Dallagnol, Rafael Antônio Narzetti, Marcelo Moreno, Margarete Dulce Bagatini
{"title":"Caffeine reduces viability, induces apoptosis, inhibits migration and modulates the CD39/CD73 axis in metastatic cutaneous melanoma cells.","authors":"Daiane Manica, Gilnei Bruno da Silva, Jussara de Lima, Joana Cassol, Paula Dallagnol, Rafael Antônio Narzetti, Marcelo Moreno, Margarete Dulce Bagatini","doi":"10.1007/s11302-023-09967-6","DOIUrl":"10.1007/s11302-023-09967-6","url":null,"abstract":"<p><p>We aimed to evaluate the effect of caffeine on viability, apoptosis, migration, redox profile and modulatory effect of the purinergic system of cutaneous melanoma cells. The melanoma cells SK-MEL-28 and non-tumoural CCD-1059sk cells were treated for 24 h with different concentrations of caffeine. Cell viability was evaluated by a biochemical assay and fluorescence microscopy, and flow cytometry assessed apoptosis induction. A wound-healing assay assessed cell migration. The redox profile was evaluated by the levels of markers of reactive oxygen species (ROS), nitric oxide (NOx), total thiols (PSH) and non-protein thiols (NPSH). RT-qPCR and flow cytometry assessed the expression of CD39 and CD73. ATPase/ADPase and AMPase enzyme activities were evaluated by hydrolysis of ATP, ADP and AMP nucleotides. A bioluminescent assay assessed extracellular ATP levels. Caffeine significantly reduced melanoma cell viability and migration and did not affect non-tumoural cells. Caffeine increased ROS levels and improved PSH levels in melanoma cells. Furthermore, caffeine reduced CD39 and CD73 expression, decreased ATP, ADP and AMP nucleotide hydrolysis and increased extracellular ATP levels. We have shown that caffeine reduces metastatic cutaneous melanoma cell viability and migration, induces ROS generation and improves PSH levels. In an unprecedented manner, we also showed that caffeine reduces the expression of CD39 and CD73 and, consequently, ATPase/ADPase/AMPase hydrolytic activity of ectonucleotidases, thus displacing the CD39/CD73 axis and increasing extracellular ATP levels. Therefore, caffeine may be an interesting compound for clinical trials with the CD39/CD73 axis as a therapeutic target.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"385-397"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41150490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信