Purinergic SignallingPub Date : 2024-08-01Epub Date: 2023-11-07DOI: 10.1007/s11302-023-09977-4
Fatma Mounieb, Somaia A Abdel-Sattar, Amany Balah, El-Sayed Akool
{"title":"P2 X 7 receptor is a critical regulator of extracellular ATP-induced profibrotic genes expression in rat kidney: implication of transforming growth factor-β/Smad signaling pathway.","authors":"Fatma Mounieb, Somaia A Abdel-Sattar, Amany Balah, El-Sayed Akool","doi":"10.1007/s11302-023-09977-4","DOIUrl":"10.1007/s11302-023-09977-4","url":null,"abstract":"<p><p>This study was designed to investigate the potential of extracellular adenosine 5'-triphosphate (ATP) via the P2 X 7 receptor to activate the renal fibrotic processes in rats. The present study demonstrates that administration of ATP rapidly activated transforming growth factor-β (TGF-β) to induce phosphorylation of Smad-2/3. Renal connective tissue growth factor (CTGF) and tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA and protein expressions were also increased following ATP administration. A decrease in TGF-β amount in serum as well as renal Smad-2/3 phosphorylation was noticed in animals pre-treated with the specific antagonist of P2 X 7 receptor, A 438,079. In addition, a significant reduction in mRNA and protein expression of CTGF and TIMP-1were also observed in the kidneys of those animals. Collectively, the current findings demonstrate that ATP has the ability to augment TGF-β-mediated Smad-2/3 phosphorylation and enhance the expression of the pro-fibrotic genes, CTGF and TIMP-1, an effect that is largely mediated via P2 X 7 receptor.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"421-430"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303607/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71485345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purinergic SignallingPub Date : 2024-08-01Epub Date: 2023-08-12DOI: 10.1007/s11302-023-09960-z
Kevin Muñoz Forti, Lucas T Woods, Kimberly J Jasmer, Jean M Camden, Gary A Weisman
{"title":"Tumoral P2Y<sub>2</sub> receptor modulates tumor growth and host anti-tumor immune responses in a syngeneic murine model of oral cancer.","authors":"Kevin Muñoz Forti, Lucas T Woods, Kimberly J Jasmer, Jean M Camden, Gary A Weisman","doi":"10.1007/s11302-023-09960-z","DOIUrl":"10.1007/s11302-023-09960-z","url":null,"abstract":"<p><p>Head and neck squamous cell carcinomas (HNSCCs) are a heterogenous group of tumors and among the top 10 most common cancers and they arise from the epithelial tissues of the mucosal surfaces of the oral cavity, oropharynx, and larynx. Aberrant purinergic signaling has been associated with various cancer types. Here, we studied the role of the P2Y<sub>2</sub> purinergic receptor (P2Y<sub>2</sub>R) in the context of oral cancer. We utilized bioinformatics analysis of deposited datasets to examine purinome gene expression in HNSCC tumors and cells lines and functionally characterized nucleotide-induced P2 receptor signaling in human FaDu and Cal27 and murine MOC2 oral cancer cell lines. Utilizing tumorigenesis assays with wild-type or P2ry2 knockout MOC2 cells we evaluated the role of P2Y<sub>2</sub>Rs in tumor growth and the host anti-tumor immune responses. Our data demonstrate that human and murine oral cancer cell lines express numerous P2 receptors, with the P2Y<sub>2</sub>R being highly expressed. Using syngeneic tumor grafts in wild-type mice, we observed that MOC2 tumors expressing P2Y<sub>2</sub>R were larger than P2Y<sub>2</sub>R<sup>-/-</sup> tumors. Wild-type MOC2 tumors contained a lower population of tumor-infiltrating CD11b<sup>+</sup>F4/80<sup>+</sup> macrophages and CD3<sup>+</sup> cells, which were revealed to be CD3<sup>+</sup>CD4<sup>+</sup>IFNγ<sup>+</sup> T cells, compared to P2Y<sub>2</sub>R<sup>-/-</sup> tumors. These results were mirrored when utilizing P2Y<sub>2</sub>R<sup>-/-</sup> mice, indicating that the changes in MOC2 tumor growth and to the host anti-tumor immune response were independent of host derived P2Y<sub>2</sub>Rs. Results suggest that targeted suppression of the P2Y<sub>2</sub>R in HNSCC cells in vivo, rather than systemic P2Y<sub>2</sub>R antagonism, may be a more effective treatment strategy for HNSCCs.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"359-370"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303632/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9984447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purinergic SignallingPub Date : 2024-08-01Epub Date: 2023-09-28DOI: 10.1007/s11302-023-09967-6
Daiane Manica, Gilnei Bruno da Silva, Jussara de Lima, Joana Cassol, Paula Dallagnol, Rafael Antônio Narzetti, Marcelo Moreno, Margarete Dulce Bagatini
{"title":"Caffeine reduces viability, induces apoptosis, inhibits migration and modulates the CD39/CD73 axis in metastatic cutaneous melanoma cells.","authors":"Daiane Manica, Gilnei Bruno da Silva, Jussara de Lima, Joana Cassol, Paula Dallagnol, Rafael Antônio Narzetti, Marcelo Moreno, Margarete Dulce Bagatini","doi":"10.1007/s11302-023-09967-6","DOIUrl":"10.1007/s11302-023-09967-6","url":null,"abstract":"<p><p>We aimed to evaluate the effect of caffeine on viability, apoptosis, migration, redox profile and modulatory effect of the purinergic system of cutaneous melanoma cells. The melanoma cells SK-MEL-28 and non-tumoural CCD-1059sk cells were treated for 24 h with different concentrations of caffeine. Cell viability was evaluated by a biochemical assay and fluorescence microscopy, and flow cytometry assessed apoptosis induction. A wound-healing assay assessed cell migration. The redox profile was evaluated by the levels of markers of reactive oxygen species (ROS), nitric oxide (NOx), total thiols (PSH) and non-protein thiols (NPSH). RT-qPCR and flow cytometry assessed the expression of CD39 and CD73. ATPase/ADPase and AMPase enzyme activities were evaluated by hydrolysis of ATP, ADP and AMP nucleotides. A bioluminescent assay assessed extracellular ATP levels. Caffeine significantly reduced melanoma cell viability and migration and did not affect non-tumoural cells. Caffeine increased ROS levels and improved PSH levels in melanoma cells. Furthermore, caffeine reduced CD39 and CD73 expression, decreased ATP, ADP and AMP nucleotide hydrolysis and increased extracellular ATP levels. We have shown that caffeine reduces metastatic cutaneous melanoma cell viability and migration, induces ROS generation and improves PSH levels. In an unprecedented manner, we also showed that caffeine reduces the expression of CD39 and CD73 and, consequently, ATPase/ADPase/AMPase hydrolytic activity of ectonucleotidases, thus displacing the CD39/CD73 axis and increasing extracellular ATP levels. Therefore, caffeine may be an interesting compound for clinical trials with the CD39/CD73 axis as a therapeutic target.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"385-397"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41150490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purinergic SignallingPub Date : 2024-08-01Epub Date: 2023-10-16DOI: 10.1007/s11302-023-09966-7
Seyed Hossein Kiaie, Zahra Hatami, Mohammad Sadegh Nasr, Pouya Pazooki, Salar Hemmati, Behzad Baradaran, Hadi Valizadeh
{"title":"Pharmacological interaction and immune response of purinergic receptors in therapeutic modulation.","authors":"Seyed Hossein Kiaie, Zahra Hatami, Mohammad Sadegh Nasr, Pouya Pazooki, Salar Hemmati, Behzad Baradaran, Hadi Valizadeh","doi":"10.1007/s11302-023-09966-7","DOIUrl":"10.1007/s11302-023-09966-7","url":null,"abstract":"<p><p>Nucleosides and purine nucleotides serve as transmitter and modulator agents that extend their functions beyond the cell. In this context, purinergic signaling plays a crucial role in regulating energy homeostasis and modulating metabolic alterations in tumor cells. Therefore, it is essential to consider the pharmacological targeting of purinergic receptors (PUR), which encompass the expression and inhibition of P1 receptors (metabotropic adenosine receptors) as well as P2 receptors (extracellular ATP/ADP) comprising P2X and P2Y receptors. Thus, the pharmacological interaction between inhibitors (such as RNA, monoclonal antibodies, and small molecules) and PUR represents a key aspect in facilitating the development of therapeutic interventions. Moreover, this review explores recent advancements in pharmacological inhibitors and the regulation of innate and adaptive immunity of PUR, specifically in relation to immunological and inflammatory responses. These responses encompass the release of pro-inflammatory cytokines (PIC), the production of reactive oxygen and nitrogen species (ROS and RNS), the regulation of T cells, and the activation of inflammasomes in all human leukocytes.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"321-343"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41238197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purinergic SignallingPub Date : 2024-08-01Epub Date: 2023-11-20DOI: 10.1007/s11302-023-09979-2
Zhenglang Zhang, Tingting Wang, Zhenhui Luo, Muhammad Haris Zaib, Mengqin Yi, Hekun Zeng, Peiyang Li, Dan Tang, Alexei Verkhratsky, Hong Nie
{"title":"Anti-inflammatory and analgesic properties of Polyphyllin VI revealed by network pharmacology and RNA sequencing.","authors":"Zhenglang Zhang, Tingting Wang, Zhenhui Luo, Muhammad Haris Zaib, Mengqin Yi, Hekun Zeng, Peiyang Li, Dan Tang, Alexei Verkhratsky, Hong Nie","doi":"10.1007/s11302-023-09979-2","DOIUrl":"10.1007/s11302-023-09979-2","url":null,"abstract":"<p><p>Inflammatory pain, sustained by a complex network of inflammatory mediators, is a severe and persistent illness affecting many of the general population. We explore possible anti-inflammatory pathways of Polyphyllin VI (PPVI) based on our prior study, which showed that PPVI reduces inflammation in mice to reduce pain. Network pharmacology and RNA-Seq identified the contribution of the MAPK signaling pathway to inflammatory pain. In the LPS/ATP-induced RAW264.7 cell model, pretreatment with PPVI for 1 h inhibited the release of IL-6 and IL-8, down-regulated expression of the P2X<sub>7</sub> receptor(P2X<sub>7</sub>R), and decreased phosphorylation of p38 and ERK1/2 components of the MAPK pathway. Moreover, PPVI decreased expression of IL-6 and IL-8 was observed in the serum of the inflammatory pain mice model and reduced phosphorylation of p38 and ERK1/2 in the dorsal root ganglia while the reductions of expression of IL-6 and phosphorylation of ERK1/2 were not observed after the pre-treatment with A740003 (an antagonist of the P2X<sub>7</sub>R). These results suggest that PPVI may inhibit the release of IL-8 by regulating P2X<sub>7</sub>R to reduce the phosphorylation of p38. However, the modulation of PPVI on the release of IL-6 and phosphorylation of ERK1/2 may mediated by other P2X<sub>7</sub>R-independent signals.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"449-463"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303374/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138047868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purinergic SignallingPub Date : 2024-08-01Epub Date: 2023-07-29DOI: 10.1007/s11302-023-09958-7
Koichiro Shinozaki, Vanessa Wong, Tomoaki Aoki, Kei Hayashida, Ryosuke Takegawa, Yusuke Endo, Harshal Nandurkar, Betty Diamond, Simon C Robson, Lance B Becker
{"title":"The role of pyruvate-induced enhancement of oxygen metabolism in extracellular purinergic signaling in the post-cardiac arrest rat model.","authors":"Koichiro Shinozaki, Vanessa Wong, Tomoaki Aoki, Kei Hayashida, Ryosuke Takegawa, Yusuke Endo, Harshal Nandurkar, Betty Diamond, Simon C Robson, Lance B Becker","doi":"10.1007/s11302-023-09958-7","DOIUrl":"10.1007/s11302-023-09958-7","url":null,"abstract":"<p><p>Purine nucleotide adenosine triphosphate (ATP) is a source of intracellular energy maintained by mitochondrial oxidative phosphorylation. However, when released from ischemic cells into the extracellular space, they act as death-signaling molecules (eATP). Despite there being potential benefit in using pyruvate to enhance mitochondria by inducing a highly oxidative metabolic state, its association with eATP levels is still poorly understood. Therefore, while we hypothesized that pyruvate could beneficially increase intracellular ATP with the enhancement of mitochondrial function after cardiac arrest (CA), our main focus was whether a proportion of the raised intracellular ATP would detrimentally leak out into the extracellular space. As indicated by the increased levels in systemic oxygen consumption, intravenous administrations of bolus (500 mg/kg) and continuous infusion (1000 mg/kg/h) of pyruvate successfully increased oxygen metabolism in post 10-min CA rats. Plasma ATP levels increased significantly from 67 ± 11 nM before CA to 227 ± 103 nM 2 h after the resuscitation; however, pyruvate administration did not affect post-CA ATP levels. Notably, pyruvate improved post-CA cardiac contraction and acidemia (low pH). We also found that pyruvate increased systemic CO<sub>2</sub> production post-CA. These data support that pyruvate has therapeutic potential for improving CA outcomes by enhancing oxygen and energy metabolism in the brain and heart and attenuating intracellular hydrogen ion disorders, but does not exacerbate the death-signaling of eATP in the blood.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"345-357"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303634/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10264334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purinergic SignallingPub Date : 2024-08-01Epub Date: 2023-11-17DOI: 10.1007/s11302-023-09974-7
Isadora Cunha Ribeiro, João Victor Badaró de Moraes, Christiane Mariotini-Moura, Marcelo Depolo Polêto, Nancy da Rocha Torres Pavione, Raissa Barbosa de Castro, Izabel Luzia Miranda, Suélen Karine Sartori, Kryssia Lohayne Santos Alves, Gustavo Costa Bressan, Raphael de Souza Vasconcellos, José Roberto Meyer-Fernandes, Gaspar Diaz-Muñoz, Juliana Lopes Rangel Fietto
{"title":"Synthesis of new non-natural L-glycosidic flavonoid derivatives and their evaluation as inhibitors of Trypanosoma cruzi ecto-nucleoside triphosphate diphosphohydrolase 1 (TcNTPDase1).","authors":"Isadora Cunha Ribeiro, João Victor Badaró de Moraes, Christiane Mariotini-Moura, Marcelo Depolo Polêto, Nancy da Rocha Torres Pavione, Raissa Barbosa de Castro, Izabel Luzia Miranda, Suélen Karine Sartori, Kryssia Lohayne Santos Alves, Gustavo Costa Bressan, Raphael de Souza Vasconcellos, José Roberto Meyer-Fernandes, Gaspar Diaz-Muñoz, Juliana Lopes Rangel Fietto","doi":"10.1007/s11302-023-09974-7","DOIUrl":"10.1007/s11302-023-09974-7","url":null,"abstract":"<p><p>Trypanosoma cruzi is the pathogen of Chagas disease, a neglected tropical disease that affects more than 6 million people worldwide. There are no vaccines to prevent infection, and the therapeutic arsenal is very minimal and toxic. The unique E-NTPDase of T. cruzi (TcNTPDase1) plays essential roles in adhesion and infection and is a virulence factor. Quercetin is a flavonoid with antimicrobial, antiviral, and antitumor activities. Its potential as a partial inhibitor of NTPDases has also been demonstrated. In this work, we synthesized the non-natural L-glycoside derivatives of quercetin and evaluated them as inhibitors of recombinant TcNTPDase1 (rTcNTPDase1). These compounds, and quercetin and miquelianin, a natural quercetin derivative, were also tested. Compound 16 showed the most significant inhibitory effect (94%). Quercetin, miquelianin, and compound 14 showed inhibition close to 50%. We thoroughly investigated the inhibitory effect of 16. Our data suggested a competitive inhibition with a Ki of 8.39 μM (± 0.90). To better understand the interaction of compound 16 and rTcNTPDase1, we performed molecular dynamics simulations of the enzyme and docking analyses with the compounds. Our predictions show that compound 16 binds to the enzyme's catalytic site and interacts with important residues for NTPDase activity. As an inhibitor of a critical T. cruzi enzyme, (16) could be helpful as a starting point in the developing of a future treatment for Chagas disease. Furthermore, the discovery of (16) as an inhibitor of TcNTPDase1 may open new avenues in the study and development of new inhibitors of E-NTPDases.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"399-419"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303637/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136398983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purinergic SignallingPub Date : 2024-08-01Epub Date: 2023-11-30DOI: 10.1007/s11302-023-09978-3
Sophie K F De Salis, Jake Zheng Chen, Kristen K Skarratt, Stephen J Fuller, Thomas Balle
{"title":"Deep learning structural insights into heterotrimeric alternatively spliced P2X7 receptors.","authors":"Sophie K F De Salis, Jake Zheng Chen, Kristen K Skarratt, Stephen J Fuller, Thomas Balle","doi":"10.1007/s11302-023-09978-3","DOIUrl":"10.1007/s11302-023-09978-3","url":null,"abstract":"<p><p>P2X7 receptors (P2X7Rs) are membrane-bound ATP-gated ion channels that are composed of three subunits. Different subunit structures may be expressed due to alternative splicing of the P2RX7 gene, altering the receptor's function when combined with the wild-type P2X7A subunits. In this study, the application of the deep-learning method, AlphaFold2-Multimer (AF2M), for the generation of trimeric P2X7Rs was validated by comparing an AF2M-generated rat wild-type P2X7A receptor with a structure determined by cryogenic electron microscopy (cryo-EM) (Protein Data Bank Identification: 6U9V). The results suggested AF2M could firstly, accurately predict the structures of P2X7Rs and secondly, accurately identify the highest quality model through the ranking system. Subsequently, AF2M was used to generate models of heterotrimeric alternatively spliced P2X7Rs consisting of one or two wild-type P2X7A subunits in combination with one or two P2X7B, P2X7E, P2X7J, and P2X7L splice variant subunits. The top-ranking models were deemed valid based on AF2M's confidence measures, stability in molecular dynamics simulations, and consistent flexibility of the conserved regions between the models. The structure of the heterotrimeric receptors, which were missing key residues in the ATP binding sites and carboxyl terminal domains (CTDs) compared to the wild-type receptor, help to explain their observed functions. Overall, the models produced in this study (available as supplementary material) unlock the possibility of structure-based studies into the heterotrimeric P2X7Rs.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"431-447"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138462305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purinergic SignallingPub Date : 2024-08-01Epub Date: 2023-09-19DOI: 10.1007/s11302-023-09969-4
Meng-Juan Sun, Yong Tang, Peter Illes
{"title":"Hippocampal astrocytes relieve anxiogenic behavior by increasing, via the release of ATP, excitatory synaptic transmission in dentate gyrus granule cells.","authors":"Meng-Juan Sun, Yong Tang, Peter Illes","doi":"10.1007/s11302-023-09969-4","DOIUrl":"10.1007/s11302-023-09969-4","url":null,"abstract":"","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"317-319"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41169544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chang-Sook Hong, Elizabeth V. Menshikova, Theresa L. Whiteside, Edwin K. Jackson
{"title":"Assessment of ATP metabolism to adenosine by ecto-nucleotidases carried by tumor-derived small extracellular vesicles","authors":"Chang-Sook Hong, Elizabeth V. Menshikova, Theresa L. Whiteside, Edwin K. Jackson","doi":"10.1007/s11302-024-10038-7","DOIUrl":"https://doi.org/10.1007/s11302-024-10038-7","url":null,"abstract":"<p>Immunosuppression is a hallmark of cancer progression. Tumor-derived small extracellular vesicles (sEV), also known as TEX, produce adenosine (ADO) and can mediate tumor-induced immunosuppression.</p><p>Here, the ATP pathway of ADO production (ATP<span>(rightarrow)</span> ADP<span>(rightarrow)</span> AMP<span>(rightarrow)</span> ADO) by ecto-nucleotidases carried on the sEV surface was evaluated by a method using N<sup>6</sup>-etheno-ATP (eATP) and N<sup>6</sup>-etheno-AMP (eAMP) as substrates for enzymatic activity. The “downstream” N<sup>6</sup>-etheno-purines (ePurines) were measured by high performance liquid chromatography with fluorescence detection (HPLC-FL).</p><p>Human melanoma cell-derived TEX (MTEX) metabolized eATP to N<sup>6</sup>-etheno-ADP (eADP), eAMP and N<sup>6</sup>-etheno-Adenosine (eADO) more robustly than control keratinocyte cell-derived sEV (CEX); due to accelerated conversion of eATP to eADP and eADP to eAMP. MTEX and CEX similarly metabolized eAMP to eADO. Blocking of the ATP pathway with the selective CD39 inhibitor ARL67156 or pan ecto-nucleotidase inhibitor POM-1 normalized the ATP pathway but neither inhibitor completely abolished it. In contrast, inhibition of CD73 by PSB12379 or AMPCP abolished eADO formation by both MTEX and CEX, suggesting that targeting CD73 is the preferred approach to eliminating ADO produced by ecto-nucleotidases located on the sEV surface.</p><p>The noninvasive, sensitive, and specific assay assessing ePurine metabolism ± ecto-nucleotidase inhibitors in TEX enables the personalized identification of ecto-nucleotidase activity primarily involved in ADO production in patients with cancer. The assay could guide precision medicine by determining which purine is the preferred target for inhibitory therapeutic interventions.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":"24 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}