巨噬细胞P2Y6受体信号作为动脉粥样硬化的关键介质和治疗靶点。

IF 3 4区 医学 Q2 NEUROSCIENCES
Aida Collado, Zhichao Zhou
{"title":"巨噬细胞P2Y6受体信号作为动脉粥样硬化的关键介质和治疗靶点。","authors":"Aida Collado, Zhichao Zhou","doi":"10.1007/s11302-025-10083-w","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis, a chronic inflammatory disease driven by lipid deposition and immune cell activation, remains a leading cause of cardiovascular morbidity and mortality. Emerging evidence highlights the role of purinergic signalling in atherogenesis, particularly the P2Y<sub>6</sub> receptor in macrophages [1]. Using RNA sequencing, proteomics, expression and functional validation in cells, mouse models and human materials, this study provides comprehensive mechanistic insights into how macrophage P2Y<sub>6</sub> receptors contribute to foam cell formation and plaque development through the phospholipase Cβ (PLCβ)/store-operated Ca<sup>2+</sup> entry/calreticulin/scavenger receptor A (SR-A) pathway. Furthermore, the study identifies thiamine pyrophosphate (TPP) as a potent P2Y<sub>6</sub> receptor antagonist, effectively inhibiting foam cell formation and reducing plaque burden in atherosclerotic mice, without inducing toxicity. These findings establish P2Y<sub>6</sub> receptors as promising therapeutic targets in atherosclerosis and introduce TPP as a potential clinical candidate for intervention.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macrophage P2Y<sub>6</sub> receptor signalling as a key mediator and therapeutic target in atherosclerosis.\",\"authors\":\"Aida Collado, Zhichao Zhou\",\"doi\":\"10.1007/s11302-025-10083-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atherosclerosis, a chronic inflammatory disease driven by lipid deposition and immune cell activation, remains a leading cause of cardiovascular morbidity and mortality. Emerging evidence highlights the role of purinergic signalling in atherogenesis, particularly the P2Y<sub>6</sub> receptor in macrophages [1]. Using RNA sequencing, proteomics, expression and functional validation in cells, mouse models and human materials, this study provides comprehensive mechanistic insights into how macrophage P2Y<sub>6</sub> receptors contribute to foam cell formation and plaque development through the phospholipase Cβ (PLCβ)/store-operated Ca<sup>2+</sup> entry/calreticulin/scavenger receptor A (SR-A) pathway. Furthermore, the study identifies thiamine pyrophosphate (TPP) as a potent P2Y<sub>6</sub> receptor antagonist, effectively inhibiting foam cell formation and reducing plaque burden in atherosclerotic mice, without inducing toxicity. These findings establish P2Y<sub>6</sub> receptors as promising therapeutic targets in atherosclerosis and introduce TPP as a potential clinical candidate for intervention.</p>\",\"PeriodicalId\":20952,\"journal\":{\"name\":\"Purinergic Signalling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Purinergic Signalling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11302-025-10083-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-025-10083-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

动脉粥样硬化是一种由脂质沉积和免疫细胞激活驱动的慢性炎症性疾病,仍然是心血管疾病发病率和死亡率的主要原因。新出现的证据强调了嘌呤能信号在动脉粥样硬化中的作用,特别是巨噬细胞[1]中的P2Y6受体。通过RNA测序、蛋白质组学、细胞、小鼠模型和人体材料的表达和功能验证,本研究提供了巨噬细胞P2Y6受体如何通过磷脂酶Cβ (PLCβ)/储存操作的Ca2+进入/钙网蛋白/清除率受体A (SR-A)途径促进泡沫细胞形成和斑块发展的全面机制见解。此外,该研究发现焦磷酸硫胺素(TPP)是一种有效的P2Y6受体拮抗剂,可有效抑制动脉粥样硬化小鼠泡沫细胞的形成,减少斑块负担,而不会引起毒性。这些发现确立了P2Y6受体是动脉粥样硬化的有希望的治疗靶点,并将TPP作为潜在的临床干预候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Macrophage P2Y6 receptor signalling as a key mediator and therapeutic target in atherosclerosis.

Atherosclerosis, a chronic inflammatory disease driven by lipid deposition and immune cell activation, remains a leading cause of cardiovascular morbidity and mortality. Emerging evidence highlights the role of purinergic signalling in atherogenesis, particularly the P2Y6 receptor in macrophages [1]. Using RNA sequencing, proteomics, expression and functional validation in cells, mouse models and human materials, this study provides comprehensive mechanistic insights into how macrophage P2Y6 receptors contribute to foam cell formation and plaque development through the phospholipase Cβ (PLCβ)/store-operated Ca2+ entry/calreticulin/scavenger receptor A (SR-A) pathway. Furthermore, the study identifies thiamine pyrophosphate (TPP) as a potent P2Y6 receptor antagonist, effectively inhibiting foam cell formation and reducing plaque burden in atherosclerotic mice, without inducing toxicity. These findings establish P2Y6 receptors as promising therapeutic targets in atherosclerosis and introduce TPP as a potential clinical candidate for intervention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Purinergic Signalling
Purinergic Signalling 医学-神经科学
CiteScore
6.60
自引率
17.10%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信