纳米氟苯达唑和嘌呤能信号调节在克服神经母细胞瘤化疗耐药中的作用。

IF 3 4区 医学 Q2 NEUROSCIENCES
Renata Siqueira de Mello, Carolina Adriane Bento, Rafael de Oliveira Faria, Vanessa Fernandes Arnaud-Sampaio, Henning Ulrich, Mariana Yasue Saito Miyagi, Gabriel Lima Barros de Araujo, Claudiana Lameu
{"title":"纳米氟苯达唑和嘌呤能信号调节在克服神经母细胞瘤化疗耐药中的作用。","authors":"Renata Siqueira de Mello, Carolina Adriane Bento, Rafael de Oliveira Faria, Vanessa Fernandes Arnaud-Sampaio, Henning Ulrich, Mariana Yasue Saito Miyagi, Gabriel Lima Barros de Araujo, Claudiana Lameu","doi":"10.1007/s11302-025-10078-7","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroblastoma is a pediatric tumor accounting for approximately 8% of childhood cancers and is associated with high mortality rates among children aged 1 to 5 years. Standard treatments often fall short, leading to recurrence and metastasis due to the development of chemoresistance. A promising approach to address this challenge involves targeting purinergic signaling pathways and drug repurposing. The combination of flubendazole in nanoformulation and vincristine exhibited synergistic effects in ACN cells, enhancing treatment efficacy. Vincristine combined with the P2X7 receptor antagonist Brilliant Blue-G showed antagonistic effects, and interactions between nanoFBZ and Brilliant Blue-G were dose-dependent. Furthermore, ACN cells exposed to 213 nM of vincristine weekly for three weeks resulted in vincristine-resistant cells with significantly higher resistance (IC<sub>50</sub> approximately 300 times greater) compared to parental cells. P2Y<sub>2</sub> receptor expression was augmented in vincristine-resistant cells, particularly after treatment with nanoFBZ and Brilliant Blue-G, while adenosine A1, A2B, and P2Y<sub>6</sub> receptor expression levels decreased. P2X7 receptor expression was also reduced in vincristine-resistant cells treated with nanoFBZ. P2X7 receptor agonism and P2Y<sub>2</sub> receptor blockade slightly elevated resistance. In conclusion, this study suggests that combining nanoFBZ with vincristine chemotherapy may offer a promising strategy for improving the treatment efficacy of neuroblastoma. The synergy between nanoFBZ and vincristine enhanced therapeutic outcomes, and P2X7 receptor antagonism further reduced neuroblastoma cell viability.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of nanoflubendazole and purinergic signaling modulation in overcoming neuroblastoma chemoresistance.\",\"authors\":\"Renata Siqueira de Mello, Carolina Adriane Bento, Rafael de Oliveira Faria, Vanessa Fernandes Arnaud-Sampaio, Henning Ulrich, Mariana Yasue Saito Miyagi, Gabriel Lima Barros de Araujo, Claudiana Lameu\",\"doi\":\"10.1007/s11302-025-10078-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroblastoma is a pediatric tumor accounting for approximately 8% of childhood cancers and is associated with high mortality rates among children aged 1 to 5 years. Standard treatments often fall short, leading to recurrence and metastasis due to the development of chemoresistance. A promising approach to address this challenge involves targeting purinergic signaling pathways and drug repurposing. The combination of flubendazole in nanoformulation and vincristine exhibited synergistic effects in ACN cells, enhancing treatment efficacy. Vincristine combined with the P2X7 receptor antagonist Brilliant Blue-G showed antagonistic effects, and interactions between nanoFBZ and Brilliant Blue-G were dose-dependent. Furthermore, ACN cells exposed to 213 nM of vincristine weekly for three weeks resulted in vincristine-resistant cells with significantly higher resistance (IC<sub>50</sub> approximately 300 times greater) compared to parental cells. P2Y<sub>2</sub> receptor expression was augmented in vincristine-resistant cells, particularly after treatment with nanoFBZ and Brilliant Blue-G, while adenosine A1, A2B, and P2Y<sub>6</sub> receptor expression levels decreased. P2X7 receptor expression was also reduced in vincristine-resistant cells treated with nanoFBZ. P2X7 receptor agonism and P2Y<sub>2</sub> receptor blockade slightly elevated resistance. In conclusion, this study suggests that combining nanoFBZ with vincristine chemotherapy may offer a promising strategy for improving the treatment efficacy of neuroblastoma. The synergy between nanoFBZ and vincristine enhanced therapeutic outcomes, and P2X7 receptor antagonism further reduced neuroblastoma cell viability.</p>\",\"PeriodicalId\":20952,\"journal\":{\"name\":\"Purinergic Signalling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Purinergic Signalling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11302-025-10078-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-025-10078-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

神经母细胞瘤是一种儿童肿瘤,约占儿童癌症的8%,与1至5岁儿童的高死亡率有关。标准治疗往往达不到要求,由于化疗耐药性的发展导致复发和转移。解决这一挑战的一个有希望的方法包括靶向嘌呤能信号通路和药物再利用。纳米制剂氟苯达唑与长春新碱联用对ACN细胞具有协同作用,增强了治疗效果。Vincristine联合P2X7受体拮抗剂Brilliant Blue-G表现出拮抗作用,且纳米ofbz与Brilliant Blue-G的相互作用呈剂量依赖性。此外,与亲本细胞相比,ACN细胞每周暴露于213 nM的长春新碱,连续三周导致长春新碱耐药细胞具有显著更高的耐药性(IC50约为300倍)。在长春新碱耐药细胞中,P2Y2受体表达增强,尤其是在纳米ofbz和Brilliant Blue-G治疗后,而腺苷A1、A2B和P2Y6受体表达水平下降。纳米ofbz处理的长春新碱耐药细胞中P2X7受体表达也降低。P2X7受体激动作用和P2Y2受体阻断作用轻微升高耐药性。综上所述,本研究提示纳米ofbz联合长春新碱化疗可能是提高神经母细胞瘤治疗效果的一种有希望的策略。纳米ofbz和长春新碱之间的协同作用增强了治疗效果,P2X7受体拮抗剂进一步降低了神经母细胞瘤细胞的活力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of nanoflubendazole and purinergic signaling modulation in overcoming neuroblastoma chemoresistance.

Neuroblastoma is a pediatric tumor accounting for approximately 8% of childhood cancers and is associated with high mortality rates among children aged 1 to 5 years. Standard treatments often fall short, leading to recurrence and metastasis due to the development of chemoresistance. A promising approach to address this challenge involves targeting purinergic signaling pathways and drug repurposing. The combination of flubendazole in nanoformulation and vincristine exhibited synergistic effects in ACN cells, enhancing treatment efficacy. Vincristine combined with the P2X7 receptor antagonist Brilliant Blue-G showed antagonistic effects, and interactions between nanoFBZ and Brilliant Blue-G were dose-dependent. Furthermore, ACN cells exposed to 213 nM of vincristine weekly for three weeks resulted in vincristine-resistant cells with significantly higher resistance (IC50 approximately 300 times greater) compared to parental cells. P2Y2 receptor expression was augmented in vincristine-resistant cells, particularly after treatment with nanoFBZ and Brilliant Blue-G, while adenosine A1, A2B, and P2Y6 receptor expression levels decreased. P2X7 receptor expression was also reduced in vincristine-resistant cells treated with nanoFBZ. P2X7 receptor agonism and P2Y2 receptor blockade slightly elevated resistance. In conclusion, this study suggests that combining nanoFBZ with vincristine chemotherapy may offer a promising strategy for improving the treatment efficacy of neuroblastoma. The synergy between nanoFBZ and vincristine enhanced therapeutic outcomes, and P2X7 receptor antagonism further reduced neuroblastoma cell viability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Purinergic Signalling
Purinergic Signalling 医学-神经科学
CiteScore
6.60
自引率
17.10%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信