{"title":"T细胞来源的腺苷通过A2B受体调节梗死心脏成纤维细胞IL-6的形成。","authors":"Tong Jiao, Zhichao Zhou","doi":"10.1007/s11302-025-10081-y","DOIUrl":null,"url":null,"abstract":"<p><p>Elevated interleukin-6 (IL-6) levels are linked to an increased risk of cardiovascular mortality in myocardial infarction (MI). Targeting IL-6 and its downstream signalling pathways represents a therapeutic strategy; however, its cellular sources and regulatory mechanisms of IL-6 remain incompletely understood. In this study, Alter and colleagues investigated the primary cell type that produces IL-6 in post-MI murine heart and the role of purinergic signalling in regulating IL-6 formation. Using cellular and mouse models, the authors identified cardiac fibroblasts as the predominant source of IL-6. Further analysis revealed that the IL-6 formation in cardiac fibroblasts is regulated by adenosine A<sub>2B</sub> receptors. Of further importance, they elucidated that T cells highly express CD73, leading to significant adenosine formation, which in turn enhances IL-6 production via Gq activation in cardiac fibroblasts following MI. These findings reveal a dynamic interplay between immune cells and fibroblasts in shaping the post-MI inflammatory response. This study suggests the adenosine-A<sub>2B</sub> receptor-IL6 axis as a potential therapeutic target to mitigate inflammation and improve cardiomyocytes salvage in MI.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"T cell-derived adenosine regulates fibroblast IL-6 formation via A<sub>2B</sub> receptors in the infarcted heart.\",\"authors\":\"Tong Jiao, Zhichao Zhou\",\"doi\":\"10.1007/s11302-025-10081-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Elevated interleukin-6 (IL-6) levels are linked to an increased risk of cardiovascular mortality in myocardial infarction (MI). Targeting IL-6 and its downstream signalling pathways represents a therapeutic strategy; however, its cellular sources and regulatory mechanisms of IL-6 remain incompletely understood. In this study, Alter and colleagues investigated the primary cell type that produces IL-6 in post-MI murine heart and the role of purinergic signalling in regulating IL-6 formation. Using cellular and mouse models, the authors identified cardiac fibroblasts as the predominant source of IL-6. Further analysis revealed that the IL-6 formation in cardiac fibroblasts is regulated by adenosine A<sub>2B</sub> receptors. Of further importance, they elucidated that T cells highly express CD73, leading to significant adenosine formation, which in turn enhances IL-6 production via Gq activation in cardiac fibroblasts following MI. These findings reveal a dynamic interplay between immune cells and fibroblasts in shaping the post-MI inflammatory response. This study suggests the adenosine-A<sub>2B</sub> receptor-IL6 axis as a potential therapeutic target to mitigate inflammation and improve cardiomyocytes salvage in MI.</p>\",\"PeriodicalId\":20952,\"journal\":{\"name\":\"Purinergic Signalling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Purinergic Signalling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11302-025-10081-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-025-10081-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
白细胞介素-6 (IL-6)水平升高与心肌梗死(MI)中心血管死亡风险增加有关。靶向IL-6及其下游信号通路是一种治疗策略;然而,其细胞来源和IL-6的调控机制仍不完全清楚。在这项研究中,Alter及其同事研究了心肌梗死后小鼠心脏中产生IL-6的主要细胞类型以及嘌呤能信号在调节IL-6形成中的作用。通过细胞和小鼠模型,作者确定心脏成纤维细胞是IL-6的主要来源。进一步分析发现,心肌成纤维细胞中IL-6的形成受腺苷A2B受体的调控。更重要的是,他们阐明了T细胞高度表达CD73,导致显著的腺苷形成,进而通过心肌梗死后心肌成纤维细胞的Gq激活增强IL-6的产生。这些发现揭示了免疫细胞和成纤维细胞在心肌梗死后炎症反应形成中的动态相互作用。该研究提示腺苷- a2b受体- il - 6轴可能是缓解心肌梗死炎症和改善心肌细胞挽救的潜在治疗靶点。
T cell-derived adenosine regulates fibroblast IL-6 formation via A2B receptors in the infarcted heart.
Elevated interleukin-6 (IL-6) levels are linked to an increased risk of cardiovascular mortality in myocardial infarction (MI). Targeting IL-6 and its downstream signalling pathways represents a therapeutic strategy; however, its cellular sources and regulatory mechanisms of IL-6 remain incompletely understood. In this study, Alter and colleagues investigated the primary cell type that produces IL-6 in post-MI murine heart and the role of purinergic signalling in regulating IL-6 formation. Using cellular and mouse models, the authors identified cardiac fibroblasts as the predominant source of IL-6. Further analysis revealed that the IL-6 formation in cardiac fibroblasts is regulated by adenosine A2B receptors. Of further importance, they elucidated that T cells highly express CD73, leading to significant adenosine formation, which in turn enhances IL-6 production via Gq activation in cardiac fibroblasts following MI. These findings reveal a dynamic interplay between immune cells and fibroblasts in shaping the post-MI inflammatory response. This study suggests the adenosine-A2B receptor-IL6 axis as a potential therapeutic target to mitigate inflammation and improve cardiomyocytes salvage in MI.
期刊介绍:
Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.