Purinergic Signalling最新文献

筛选
英文 中文
The P2Y2 receptor: a new player in taste buds. P2Y2受体:味蕾中的新角色。
IF 2.4 4区 医学
Purinergic Signalling Pub Date : 2025-08-01 Epub Date: 2025-05-08 DOI: 10.1007/s11302-025-10091-w
Jian-Xiong Zhou, Yong Tang
{"title":"The P2Y<sub>2</sub> receptor: a new player in taste buds.","authors":"Jian-Xiong Zhou, Yong Tang","doi":"10.1007/s11302-025-10091-w","DOIUrl":"10.1007/s11302-025-10091-w","url":null,"abstract":"","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"997-999"},"PeriodicalIF":2.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12454729/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144011727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting adenosine A2A receptors for early intervention of retinopathy of prematurity. 以腺苷 A2A 受体为靶点,早期干预早产儿视网膜病变。
IF 2.4 4区 医学
Purinergic Signalling Pub Date : 2025-08-01 Epub Date: 2024-02-08 DOI: 10.1007/s11302-024-09986-x
Xuhao Chen, Xiaoting Sun, Yuanyuan Ge, Xuzhao Zhou, Jiang-Fan Chen
{"title":"Targeting adenosine A<sub>2A</sub> receptors for early intervention of retinopathy of prematurity.","authors":"Xuhao Chen, Xiaoting Sun, Yuanyuan Ge, Xuzhao Zhou, Jiang-Fan Chen","doi":"10.1007/s11302-024-09986-x","DOIUrl":"10.1007/s11302-024-09986-x","url":null,"abstract":"<p><p>Retinopathy of prematurity (ROP) continues to pose a significant threat to the vision of numerous children worldwide, primarily owing to the increased survival rates of premature infants. The pathologies of ROP are mainly linked to impaired vascularization as a result of hyperoxia, leading to subsequent neovascularization. Existing treatments, including anti-vascular endothelial growth factor (VEGF) therapies, have thus far been limited to addressing pathological angiogenesis at advanced ROP stages, inevitably leading to adverse side effects. Intervention to promote physiological angiogenesis during the initial stages could hold the potential to prevent ROP. Adenosine A<sub>2A</sub> receptors (A<sub>2A</sub>R) have been identified in various ocular cell types, exhibiting distinct densities and functionally intricate connections with oxygen metabolism. In this review, we discuss experimental evidence that strongly underscores the pivotal role of A<sub>2A</sub>R in ROP. In particular, A<sub>2A</sub>R blockade may represent an effective treatment strategy, mitigating retinal vascular loss by reversing hyperoxia-mediated cellular proliferation inhibition and curtailing hypoxia-mediated neovascularization in oxygen-induced retinopathy (OIR). These effects stem from the interplay of endothelium, neuronal and glial cells, and novel molecular pathways (notably promoting TGF-β signaling) at the hyperoxia phase. We propose that pharmacological targeting of A<sub>2A</sub>R signaling may confer an early intervention for ROP with distinct therapeutic benefits and mechanisms than the anti-VEGF therapy.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"851-862"},"PeriodicalIF":2.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12454231/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electroacupuncture regulates the P2X7R-NLRP3 inflammatory cascade to relieve decreased sensation on ocular surface of type 2 diabetic rats with dry eye. 电针调节 P2X7R-NLRP3 炎症级联,缓解 2 型糖尿病干眼症大鼠眼表感觉减退。
IF 2.4 4区 医学
Purinergic Signalling Pub Date : 2025-08-01 Epub Date: 2024-03-11 DOI: 10.1007/s11302-024-09991-0
Mi-Mi Wan, Zhang-Yitian Fu, Tuo Jin, Zhuo-Yuan Wang, Xin-Yi Sun, Wei-Ping Gao
{"title":"Electroacupuncture regulates the P2X<sub>7</sub>R-NLRP3 inflammatory cascade to relieve decreased sensation on ocular surface of type 2 diabetic rats with dry eye.","authors":"Mi-Mi Wan, Zhang-Yitian Fu, Tuo Jin, Zhuo-Yuan Wang, Xin-Yi Sun, Wei-Ping Gao","doi":"10.1007/s11302-024-09991-0","DOIUrl":"10.1007/s11302-024-09991-0","url":null,"abstract":"<p><p>Dry eye (DE) is a prevalent ocular surface disease in patients with type 2 diabetes (T2DM). However, current medications are ineffective against decreased sensation on the ocular surface. While electroacupuncture (EA) effectively alleviates decreased sensation on ocular surface of DE in patients with T2DM, the neuroprotective mechanism remains unclear. This study explored the pathogenesis and therapeutic targets of T2DM-associated DE through bioinformatics analysis. It further investigated the underlying mechanism by which EA improves decreased sensation on the ocular surface of DE in rats with T2DM. Bioinformatic analysis was applied to annotate the potential pathogenesis of T2DM DE. T2DM and DE was induced in male rats. Following treatment with EA and fluorometholone, comprehensive metrics were assessed. Additionally, the expression patterns of key markers were studied. Key targets such as NLRP3, Caspase-1, and NOD-like receptor signaling may be involved in the pathogenesis of T2DM DE. EA treatment improved ocular measures. Furthermore, EA potently downregulated P2X<sub>7</sub>R, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 expression within the trigeminal ganglion and spinal trigeminal nucleus caudalis. Targeted P2X<sub>7</sub>R antagonist (A-438079) and agonist (BzATP) employed as controls to decipher the biochemistry of the therapeutic effects of EA showed an anti-inflammatory effect with A-438079, while BzATP blocked the anti-inflammatory effect of EA. EA relieved DE symptoms and attenuated inflammatory damage to sensory nerve pathways in T2DM rats with DE. These findings suggest a crucial role of EA inhibition of the P2X<sub>7</sub>R-NLRP3 inflammatory cascade to provide these benefits.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"651-666"},"PeriodicalIF":2.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12454788/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140102293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
P2X7 receptors: a bibliometric review from 2002 to 2023. P2X7 受体:2002 年至 2023 年文献计量学回顾。
IF 2.4 4区 医学
Purinergic Signalling Pub Date : 2025-08-01 Epub Date: 2024-02-29 DOI: 10.1007/s11302-024-09996-9
Haiting Tang, Wei Wei, Yu Luo, Xiaoqing Lu, Jun Chen, Shenqiao Yang, Fei Wu, Haiyan Zhou, Wenbin Ma, Xin Yang
{"title":"P2X7 receptors: a bibliometric review from 2002 to 2023.","authors":"Haiting Tang, Wei Wei, Yu Luo, Xiaoqing Lu, Jun Chen, Shenqiao Yang, Fei Wu, Haiyan Zhou, Wenbin Ma, Xin Yang","doi":"10.1007/s11302-024-09996-9","DOIUrl":"10.1007/s11302-024-09996-9","url":null,"abstract":"<p><p>For many years, there has been ongoing research on the P2X7 receptor (P2X7R). A comprehensive, systematic, and objective evaluation of the scientific output and status of P2X7R will be instrumental in guiding future research directions. This study aims to present the status and trends of P2X7R research from 2002 to 2023. Publications related to P2X7R were retrieved from the Web of Science Core Collection database. Quantitative analysis and visualization tools were Microsoft Excel, VOSviewer, and CiteSpace software. The analysis content included publication trends, literature co-citation, and keywords. 3282 records were included in total, with the majority of papers published within the last 10 years. Based on literature co-citation and keyword analysis, neuroinflammation, neuropathic pain, gastrointestinal diseases, tumor microenvironment, rheumatoid arthritis, age-related macular degeneration, and P2X7R antagonists were considered to be the hotspots and frontiers of P2X7R research. Researchers will get a more intuitive understanding of the status and trends of P2X7R research from this study.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"959-977"},"PeriodicalIF":2.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12454250/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State of the art indicators for imaging purinergic dynamics in vitro and in vivo. 体外和体内嘌呤能动态成像的最新技术指标。
IF 2.4 4区 医学
Purinergic Signalling Pub Date : 2025-08-01 Epub Date: 2025-06-17 DOI: 10.1007/s11302-025-10095-6
Yumo Li, Liwan Zhang, Bohan Li, Yulong Li, Zhaofa Wu
{"title":"State of the art indicators for imaging purinergic dynamics in vitro and in vivo.","authors":"Yumo Li, Liwan Zhang, Bohan Li, Yulong Li, Zhaofa Wu","doi":"10.1007/s11302-025-10095-6","DOIUrl":"10.1007/s11302-025-10095-6","url":null,"abstract":"<p><p>Purinergic neurotransmission, a dynamic signaling system using adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine (ADO), uridine diphosphate (UDP), and others, plays a crucial role in brain function. Purinergic signaling is involved in regulating synaptic communication to influence sleep and neuroprotection; malfunction of purinergic signaling contributes to various neurological disorders like pain, epilepsy, and depression. Effective detection methods are crucial for a comprehensive understanding of the multifaceted roles of purinergic signaling in the brain. This review sheds light on advancements in fluorescent indicators, a powerful toolkit for visualizing purinergic activities in living animals. We explore the diverse applications of these indicators in studying purinergic transmission both in health and in diseases. Despite their current strengths, we emphasize the need for continuous development of fluorescent indicators to achieve an even more comprehensive, specific, and quantitative detection of purinergic signaling.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"945-957"},"PeriodicalIF":2.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12454249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144317807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The enzymatic degradation of ATP to adenosine by microglial CD39 regulates neurovascular coupling and metabolic supply to the brain. 小胶质细胞CD39将ATP酶降解为腺苷调节神经血管偶联和脑代谢供应。
IF 2.4 4区 医学
Purinergic Signalling Pub Date : 2025-08-01 Epub Date: 2025-06-20 DOI: 10.1007/s11302-025-10102-w
Jing Guo, Yong Tang, Peter Illes
{"title":"The enzymatic degradation of ATP to adenosine by microglial CD39 regulates neurovascular coupling and metabolic supply to the brain.","authors":"Jing Guo, Yong Tang, Peter Illes","doi":"10.1007/s11302-025-10102-w","DOIUrl":"10.1007/s11302-025-10102-w","url":null,"abstract":"","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"979-981"},"PeriodicalIF":2.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12454696/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144333819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Caffeine: a potential mechanism for anti-obesity. 咖啡因:抗肥胖的潜在机制。
IF 2.4 4区 医学
Purinergic Signalling Pub Date : 2025-08-01 Epub Date: 2024-05-28 DOI: 10.1007/s11302-024-10022-1
Meng Wang, Wei Guo, Jiang-Fan Chen
{"title":"Caffeine: a potential mechanism for anti-obesity.","authors":"Meng Wang, Wei Guo, Jiang-Fan Chen","doi":"10.1007/s11302-024-10022-1","DOIUrl":"10.1007/s11302-024-10022-1","url":null,"abstract":"<p><p>Obesity refers to the excessive accumulation of fat caused by a long-term imbalance between energy intake (EI) and energy expenditure (EE). Over recent years, obesity has become a major public health challenge. Caffeine is a natural product that has been demonstrated to exert anti-obesity effects; however, the mechanisms responsible for the effect of caffeine on weight loss have yet to be fully elucidated. Most obesity-related deaths are due to cardiovascular disease. Recent research has demonstrated that caffeine can reduce the risk of death from cardiovascular disease; thus, it can be hypothesized that caffeine may represent a new therapeutic agent for weight loss. In this review, we synthesize data arising from clinical and animal studies over the last decade and discuss the potential mechanisms by which caffeine may induce weight loss, focusing particularly on increasing energy consumption, suppressing appetite, altering lipid metabolism, and influencing the gut microbiota. Finally, we summarize the major challenges associated with caffeine and anti-obesity research and highlight possible directions for future research and development.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"893-909"},"PeriodicalIF":2.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12454747/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Schwann cells transplantation improves nerve injury and alleviates neuropathic pain in rats. 许旺细胞移植可改善大鼠神经损伤并减轻神经性疼痛。
IF 2.4 4区 医学
Purinergic Signalling Pub Date : 2025-08-01 Epub Date: 2024-09-06 DOI: 10.1007/s11302-024-10046-7
Wen-Jun Zhang, Xi Li, Jun-Xiang Liao, Dong-Xia Hu, Song Huang
{"title":"Schwann cells transplantation improves nerve injury and alleviates neuropathic pain in rats.","authors":"Wen-Jun Zhang, Xi Li, Jun-Xiang Liao, Dong-Xia Hu, Song Huang","doi":"10.1007/s11302-024-10046-7","DOIUrl":"10.1007/s11302-024-10046-7","url":null,"abstract":"<p><p>The mechanism of neuropathic pain induced by nerve injury is complex and there are no effective treatment methods. P2X4 receptor expression is closely related to the occurrence of pain. Schwann cells (SCs) play a key protective role in the repair of peripheral nerve injury and myelin sheath regeneration. However, whether SCs can affect the expression of P2X4 receptor and play a role in pathological pain is still unclear. Therefore, this study investigated the effect of SCs on whether they can down regulate the expression of P2X4 receptor to affect pain. The results showed that in the neuropathic pain induced by sciatic nerve injury model, the expression of P2X4 receptor in spinal cord tissue was significantly increased and the pain sensation of rats was increased. While SCs transplantation could down regulate the expression of P2X4 receptors in spinal cord and increase the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of rats. These data indicate that SCs can reduce the expression of P2X4 receptors to alleviate neuropathic pain, indicating that SCs can mediate P2X4 receptor signalling as a new target for pain treatment.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"611-619"},"PeriodicalIF":2.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12454839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
P2X7 and P2Y1 receptors in DRG mediate electroacupuncture to inhibit peripheral sensitization in rats with IBS visceral pain. DRG中的P2X7和P2Y1受体介导电针抑制肠易激综合征内脏痛大鼠的外周敏感性
IF 2.4 4区 医学
Purinergic Signalling Pub Date : 2025-08-01 Epub Date: 2024-06-26 DOI: 10.1007/s11302-024-10028-9
Tingting Lv, Guona Li, Chen Zhao, Jindan Ma, Fang Zhang, Min Zhao, Huirong Liu, Huangan Wu, Kunshan Li, Zhijun Weng
{"title":"P2X7 and P2Y<sub>1</sub> receptors in DRG mediate electroacupuncture to inhibit peripheral sensitization in rats with IBS visceral pain.","authors":"Tingting Lv, Guona Li, Chen Zhao, Jindan Ma, Fang Zhang, Min Zhao, Huirong Liu, Huangan Wu, Kunshan Li, Zhijun Weng","doi":"10.1007/s11302-024-10028-9","DOIUrl":"10.1007/s11302-024-10028-9","url":null,"abstract":"<p><p>Although multiple purinergic receptors mediate the analgesic effects of acupuncture, it remains unclear whether there is mutual interaction between purinergic receptors to jointly mediate the electroacupuncture inhibition of peripheral sensitization in visceral pain. Visceral hypersensitivity was induced by intracolonic 2,4,6-trinitrobenzene sulfonic acid (TNBS) in rat. The antinociception effect of electroacupuncture on visceral pain was evaluated by morphology, behaviors, neuroelectrophysiology and molecular biology techniques. After labeling the colon-related primary sensory neurons with neural retrograde tracer and employing neuropharmacology, neuroelectrophysiology, and molecular biotechnology, the mechanisms of P2X7R, P2Y<sub>1</sub>R, and P2X3R in colon-related dorsal root ganglion (DRG) neurons alleviating visceral hypersensitivity of irritable bowel syndrome (IBS) by electroacupuncture at Zusanli and Sanyinjiao acupoints.were elucidated from the perspective of peripheral sensitization. Electroacupuncture significantly inhibited TNBS-induced colonic hypersensitivity in rats with IBS, and Satellite Glial Cells (SGCs) in DRG were found to be involved in electroacupuncture-mediated regulation of the electrophysiological properties of neurons. P2X7R was found to play a pain-inducing role in IBS visceral hypersensitivity by affecting P2X3R, and electroacupuncture exerted an analgesic effect by inhibiting P2X7R activation. P2Y<sub>1</sub>R was found to play an analgesic role in the process of visceral pain, mediating electroacupuncture to relieve visceral hypersensitivity. P2Y<sub>1</sub>R relieved visceral pain by inhibiting P2X3R in neurons associated with nociception, with P2X7R identified as upstream of P2Y<sub>1</sub>R up-regulation by electroacupuncture. Our study suggests that the P2X7R → P2Y<sub>1</sub>R → P2X3R inhibitory pathway in DRG mediates the inhibition of peripheral sensitization by electroacupuncture in rats with IBS visceral hypersensitivity.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"549-563"},"PeriodicalIF":2.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12454702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of macrophage ATP metabolism disorder in SiO2‑induced pulmonary fibrosis: a review. 巨噬细胞ATP代谢紊乱在二氧化硅诱导的肺纤维化中的作用
IF 2.4 4区 医学
Purinergic Signalling Pub Date : 2025-08-01 Epub Date: 2025-05-13 DOI: 10.1007/s11302-025-10093-8
Hui-Jie Hu, Yuan-Yuan Fu, Shu-Ling Du, Yu-Han Zhang, Zhao-Qiang Zhang, Gui-Zhi Han
{"title":"Role of macrophage ATP metabolism disorder in SiO<sub>2</sub>‑induced pulmonary fibrosis: a review.","authors":"Hui-Jie Hu, Yuan-Yuan Fu, Shu-Ling Du, Yu-Han Zhang, Zhao-Qiang Zhang, Gui-Zhi Han","doi":"10.1007/s11302-025-10093-8","DOIUrl":"10.1007/s11302-025-10093-8","url":null,"abstract":"<p><p>Silicosis, a chronic lung disease, results from prolonged inhalation of silica dust (SiO<sub>2</sub>) in occupational environments, and its pathogenesis remains incompletely elucidated. Studies have shown that alveolar macrophages (AMs) play a pivotal role in its development. These AMs phagocytose the inhaled SiO<sub>2</sub>, which leads to morphological, structural, and functional abnormalities that result in lung fibrosis. During this process, adenosine triphosphate (ATP) not only provides energy for the physiological and pathological activities but also acts as a key intracellular and extracellular signaling molecule and regulates cytokine synthesis and secretion. This complex process has not been systematically summarized. In this study, first, the current data on ATP metabolism in the development of SiO<sub>2</sub>-induced pulmonary fibrosis are introduced. ATP metabolism disorder, caused by impaired production, utilization, or distribution of ATP, disrupts macrophage energy homeostasis. Then, how ATP metabolism disorder affects macrophage morphology and function and the inflammatory and fibrotic processes of the lungs by activating the P2X7 receptor-mediated ATP signaling pathway are discussed. Finally, current therapeutic strategies targeting ATP metabolism disorder and ATP signaling pathways in silicosis are summarized. In conclusion, SiO<sub>2</sub>-induced ATP metabolism disorder indirectly accelerates the progression of silicosis fibrosis.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"929-943"},"PeriodicalIF":2.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12454751/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144043741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信