Purinergic Signalling最新文献

筛选
英文 中文
Unexpected role of microglia and P2Y12 in the induction of and emergence from anesthesia. 小胶质细胞和 P2Y12 在麻醉诱导和唤醒中的意外作用。
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-12-01 Epub Date: 2024-05-10 DOI: 10.1007/s11302-024-10014-1
Bijay Parajuli, Schuichi Koizumi
{"title":"Unexpected role of microglia and P2Y<sub>12</sub> in the induction of and emergence from anesthesia.","authors":"Bijay Parajuli, Schuichi Koizumi","doi":"10.1007/s11302-024-10014-1","DOIUrl":"10.1007/s11302-024-10014-1","url":null,"abstract":"","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"573-575"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554972/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140896098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-aided search for ligands of P2Y6 and other P2Y receptors. 机器学习辅助搜索 P2Y6 和其他 P2Y 受体的配体。
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-12-01 Epub Date: 2024-03-25 DOI: 10.1007/s11302-024-10003-4
Ana C Puhl, Sarah A Lewicki, Zhan-Guo Gao, Asmita Pramanik, Vadim Makarov, Sean Ekins, Kenneth A Jacobson
{"title":"Machine learning-aided search for ligands of P2Y<sub>6</sub> and other P2Y receptors.","authors":"Ana C Puhl, Sarah A Lewicki, Zhan-Guo Gao, Asmita Pramanik, Vadim Makarov, Sean Ekins, Kenneth A Jacobson","doi":"10.1007/s11302-024-10003-4","DOIUrl":"10.1007/s11302-024-10003-4","url":null,"abstract":"<p><p>The P2Y<sub>6</sub> receptor, activated by uridine diphosphate (UDP), is a target for antagonists in inflammatory, neurodegenerative, and metabolic disorders, yet few potent and selective antagonists are known to date. This prompted us to use machine learning as a novel approach to aid ligand discovery, with pharmacological evaluation at three P2YR subtypes: initially P2Y<sub>6</sub> and subsequently P2Y<sub>1</sub> and P2Y<sub>14</sub>. Relying on extensive published data for P2Y<sub>6</sub>R agonists, we generated and validated an array of classification machine learning model using the algorithms deep learning (DL), adaboost classifier (ada), Bernoulli NB (bnb), k-nearest neighbors (kNN) classifier, logistic regression (lreg), random forest classifier (rf), support vector classification (SVC), and XGBoost (XGB) classifier models, and the common consensus was applied to molecular selection of 21 diverse structures. Compounds were screened using human P2Y<sub>6</sub>R-induced functional calcium transients in transfected 1321N1 astrocytoma cells and fluorescent binding inhibition at closely related hP2Y<sub>14</sub>R expressed in CHO cells. The hit compound ABBV-744, an experimental anticancer drug with a 6-methyl-7-oxo-6,7-dihydro-1H-pyrrolo[2,3-c]pyridine scaffold, had multifaceted interactions with the P2YR family: hP2Y<sub>6</sub>R inhibition in a non-surmountable fashion, suggesting that noncompetitive antagonism, and hP2Y<sub>1</sub>R enhancement, but not hP2Y<sub>14</sub>R binding inhibition. Other machine learning-selected compounds were either weak (experimental anti-asthmatic drug AZD5423 with a phenyl-1H-indazole scaffold) or inactive in inhibiting the hP2Y<sub>6</sub>R. Experimental drugs TAK-593 and GSK1070916 (100 µM) inhibited P2Y<sub>14</sub>R fluorescent binding by 50% and 38%, respectively, and all other compounds by < 20%. Thus, machine learning has led the way toward revealing previously unknown modulators of several P2YR subtypes that have varied effects.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"617-627"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554998/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular mechanisms of extracellular-ATP-mediated colorectal cancer progression: Implication of purinergic receptors-mediated nucleocytoplasmic shuttling of HuR. 细胞外-ATP 介导的结直肠癌进展的分子机制:嘌呤能受体介导的 HuR 核胞质穿梭的影响
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-12-01 Epub Date: 2024-05-27 DOI: 10.1007/s11302-024-10021-2
Abdel-Aziz S Shatat, Elsayed M Mahgoup, Mohammed H Rashed, Ibrahim G Saleh, El-Sayed Akool
{"title":"Molecular mechanisms of extracellular-ATP-mediated colorectal cancer progression: Implication of purinergic receptors-mediated nucleocytoplasmic shuttling of HuR.","authors":"Abdel-Aziz S Shatat, Elsayed M Mahgoup, Mohammed H Rashed, Ibrahim G Saleh, El-Sayed Akool","doi":"10.1007/s11302-024-10021-2","DOIUrl":"10.1007/s11302-024-10021-2","url":null,"abstract":"<p><p>One of the leading causes of cancer-related deaths worldwide is colorectal cancer (CRC). Extracellular ATP (e-ATP) and purinergic receptors (P2R) play a central role in CRC proliferation and progression. Human antigen R (HuR) is becoming more and more understood to be essential for the expression of genes linked to cancer. The current study demonstrates that ATP can mediate CRC (Caco-2 cells) progression via induction of HuR nucleocytoplasmic shuttling and subsequent expression of cancer-related genes, a consequence mostly mediated via the P2R receptor. It was also noted that suppression of HuR activity by using dihydrotanshinone I (DHTS) prevents cancer-related gene expression and subsequent CRC (Caco-2 cells) progression induced by ATP. The expression of cyclin A2/cyclin-dependent kinase 2 (CDK2), Bcl-2, ProT-α, hypoxia-inducible factor1-α (HIF1-α), vascular endothelial growth factor A (VEGF-A), transforming growth factor-β (TGF-β) and matrix metallopeptidase 9 (MMP-9) induced by ATP were highly reduced in the presence of either PPADS (non-selective P2R antagonist) or DHTS. In addition, e-ATP-induced Caco-2 cell proliferation as well as cell survival were highly reduced in the presence of either PPADS or DHTS or selective CDK-2 inhibitor (Roscovitine) or selective Bcl-2 inhibitor (ABT-263). Furthermore, it was found that MMP-9 is critical for Caco-2 cells migration induced by e-ATP as demonstrated by a clear reduction in cells migration in the presence of a selective MMP-9 inhibitor (Marimastat). Collectively, these data demonstrate that ATP through P2R activation can induce HuR nucleocytoplasmic shuttling that could be translated into an increase in cancer-related genes expression and subsequent, cell proliferation and progression.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"669-680"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554961/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141155008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of ecto-5'-nucleotidase in bladder function activity and smooth muscle contractility. 外-5'-核苷酸酶在膀胱功能活动和平滑肌收缩中的作用
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-12-01 Epub Date: 2024-05-08 DOI: 10.1007/s11302-024-10015-0
Basu Chakrabarty, Bahareh Vahabi
{"title":"Role of ecto-5'-nucleotidase in bladder function activity and smooth muscle contractility.","authors":"Basu Chakrabarty, Bahareh Vahabi","doi":"10.1007/s11302-024-10015-0","DOIUrl":"10.1007/s11302-024-10015-0","url":null,"abstract":"","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"577-579"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140892455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Purinergic P2Y1 and P2Y12 receptors control enteric nervous system activity through neuro-glia-macrophage crosstalk. 嘌呤能P2Y1和P2Y12受体通过神经胶质-巨噬细胞串扰控制肠神经系统活性。
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-11-29 DOI: 10.1007/s11302-024-10060-9
Blake J Hendler, Jonathon L McClain, Aurora Zilli, Luisa Seguella, Brian D Gulbransen
{"title":"Purinergic P2Y<sub>1</sub> and P2Y<sub>12</sub> receptors control enteric nervous system activity through neuro-glia-macrophage crosstalk.","authors":"Blake J Hendler, Jonathon L McClain, Aurora Zilli, Luisa Seguella, Brian D Gulbransen","doi":"10.1007/s11302-024-10060-9","DOIUrl":"https://doi.org/10.1007/s11302-024-10060-9","url":null,"abstract":"<p><p>Purines are important mediators of intercellular communication in the enteric nervous system (ENS) that participate in physiological gut functions and disease. Purinergic transmission is prominent in mechanisms of crosstalk between enteric neurons and glia where enteric glia exhibit high responsiveness to adenosine diphosphate (ADP) through P2Y<sub>1</sub> receptors and neurons to adenosine triphosphate (ATP) through P2X<sub>3</sub> receptors. Despite functional data suggesting that enteric glia are the primary site of P2Y<sub>1</sub> expression in the ENS, gene sequencing suggests that P2Y<sub>1</sub> expression is more enriched in neurons than glia. The reason for the mismatch between genomic and functional data is unclear but could involve co-expression of inhibitory P2Y<sub>12</sub> receptors in neurons. We addressed this issue by studying the expression and function of P2Y<sub>1</sub> and P2Y<sub>12</sub> receptors in the mouse ENS using live immunolabeling and calcium imaging techniques. The data show that ADP drives activity among enteric glia and neurons in the myenteric plexus. Interestingly, inhibiting P2Y<sub>12</sub> activity increased neuron responses to ADP and overall spontaneous activity among enteric neurons and glia while decreasing the magnitude of glial responses to ADP. Investigating the location of the receptors involved revealed P2Y<sub>1</sub> receptor expression by both neurons and glia, while P2Y<sub>12</sub> receptor expression was minimal in the ENS. Instead, P2Y<sub>12</sub> expression was enriched in the surrounding muscularis macrophages. Macrophages positive for P2Y<sub>12</sub> overlapped with CD163 positive subsets that have known inhibitory influences over myenteric neurocircuits. Together, these data suggest that macrophage P2Y<sub>12</sub> pathways act to constrain activity in the ENS, which could have implications in mechanisms that contribute to enteric hyperexcitability following disease.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of the P2X7 receptor in inactivated SARS-CoV-2-induced lung injury. P2X7 受体在灭活 SARS-CoV-2 诱导的肺损伤中的作用
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-11-28 DOI: 10.1007/s11302-024-10062-7
N C Carvalho-Barbosa, Fabiana Cristina-Rodrigues, Jairo R Temerozo, Thiago M L Souza, Andre L Gouvêa, Claudio A Canetti, Eleonora Kurtenbach, Dumith Chequer Bou-Habib, Claudia F Benjamim, Christina M Takiya, Luiz E B Savio, Robson Coutinho-Silva
{"title":"The role of the P2X7 receptor in inactivated SARS-CoV-2-induced lung injury.","authors":"N C Carvalho-Barbosa, Fabiana Cristina-Rodrigues, Jairo R Temerozo, Thiago M L Souza, Andre L Gouvêa, Claudio A Canetti, Eleonora Kurtenbach, Dumith Chequer Bou-Habib, Claudia F Benjamim, Christina M Takiya, Luiz E B Savio, Robson Coutinho-Silva","doi":"10.1007/s11302-024-10062-7","DOIUrl":"https://doi.org/10.1007/s11302-024-10062-7","url":null,"abstract":"<p><p>Purinergic signaling plays a role in the pathophysiology of different viral infections. Recently, we showed that COVID-19 increases extracellular ATP levels, which may amplify the pro-inflammatory signals in the disease. The P2X7 receptor can be a protagonist in the pro-inflammatory responses. Herein, we investigated the role of the P2X7 receptor in the lung immune response triggered by inoculation of inactivated SARS-CoV-2 (iSARS-CoV-2) in K18-Human ACE2 transgenic mice. Pharmacological inhibition of the P2X7 receptor was performed with intraperitoneal administration of 50 mg/kg of Brilliant Blue G (BBG) one day before viral inoculation. Animals were divided into four groups: a control group (MOCK), a group inoculated with the inactivated virus iSARS-CoV-2, a BBG-treated control group (MOCK + BBG), and a BBG-treated inoculated group (iSARS-CoV-2 + BBG). Virus inoculation was intratracheal with 50 µl of mock or 2 × 10<sup>6</sup> Plaque Forming Units (PFU) of iSARS-CoV-2. After three days, blood and lungs were collected. We found a significant increase in ATP and LDH in serum and mRNA levels of P2X7 and P2Y<sub>12</sub> receptors, CD39, IL-1β, and TNF-α in the lung of the iSARS-CoV-2 group when compared with the control group. BBG treatment attenuated these increases. Lung histological analyses showed severe lung damage in the iSARS-CoV-2 group, which was reduced by the BBG treatment. Immunohistochemical staining confirmed the increased presence of P2X7, P2Y<sub>12</sub>, and CD39 proteins in the iSARS-CoV-2 vs. the MOCK group. Thus, P2X7 receptor inhibition decreases iSARS-CoV-2-induced lung inflammation, indicating that this receptor might contribute to SARS-CoV-2 pathology.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antagonism of the ATP-gated P2X7 receptor inhibits the proliferation of hepatocellular carcinoma cells. 拮抗 ATP 门控 P2X7 受体可抑制肝癌细胞的增殖。
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-11-16 DOI: 10.1007/s11302-024-10064-5
Xinxing Tantai, Xin Yang, Xinyuan Liu, Xiao Yang
{"title":"Antagonism of the ATP-gated P2X7 receptor inhibits the proliferation of hepatocellular carcinoma cells.","authors":"Xinxing Tantai, Xin Yang, Xinyuan Liu, Xiao Yang","doi":"10.1007/s11302-024-10064-5","DOIUrl":"https://doi.org/10.1007/s11302-024-10064-5","url":null,"abstract":"<p><p>The P2X7 receptor, an ATP-gated ion channel which belongs to the P2X receptor family, plays critical roles in recognizing extracellular adenosine 5'-triphosphate (ATP) and is widely expressed in most tumor cells as well as inflammatory cells. Previously, the P2X7 receptor has been demonstrated to modulate the progression of various malignancies, including glioblastoma, pancreatic cancer, lung cancer, leukemia, and lymphoma. However, the biological function and prognostic values of P2X7 receptor in hepatocellular carcinoma remain to be determined. Here, we investigated the expression level of P2X7 receptor in patients with hepatocellular carcinoma. Then MTS and EdU assays were carried out to study the role of P2X7 receptor blockade in the proliferation of hepatocellular carcinoma cells. In addition, the underlying mechanism was further elucidated by bulk RNAseq. Compared to the control group, the P2X7 receptor was significantly up-regulated in the hepatocellular carcinoma group. Interestingly, A740003 and A438079, two selective antagonists at P2X7 receptor, significantly blocked Ca<sup>2+</sup> influx and decreased the proliferative rate of hepatocellular carcinoma cells. Furthermore, the expression level of chondroitin sulfate synthase 1 (CHSY1), an enzyme that mediates the polymerization step of chondroitin sulfate, was reduced by both A740003 and A438079. In conclusion, inhibition of the P2X7 receptor attenuated the proliferation of hepatocellular carcinoma cells, and this process was largely modulated by CHSY1. Thus, our findings reveal a previously unknown role for P2X7 receptor in the proliferation of hepatocellular carcinoma cells and imply that the P2X7 receptor may represent a new target for the treatment of hepatocellular carcinoma.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CD39 activities in the treated acupoints contributed to the analgesic mechanism of acupuncture on arthritis rats. 治疗穴位中的 CD39 活性有助于针灸对关节炎大鼠的镇痛机制。
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-11-15 DOI: 10.1007/s11302-024-10065-4
Yu-Jia Li, Jie Lin, Si-Qi Tang, Wei-Min Zuo, Guang-Hong Ding, Xue-Yong Shen, Li-Na Wang
{"title":"CD39 activities in the treated acupoints contributed to the analgesic mechanism of acupuncture on arthritis rats.","authors":"Yu-Jia Li, Jie Lin, Si-Qi Tang, Wei-Min Zuo, Guang-Hong Ding, Xue-Yong Shen, Li-Na Wang","doi":"10.1007/s11302-024-10065-4","DOIUrl":"10.1007/s11302-024-10065-4","url":null,"abstract":"<p><p>Our previous work had identified that at the acupuncture point (acupoint), acupuncture-induced ATP release was a pivotal event in the initiation of analgesia. We aimed to further elucidate the degradation of ATP by CD39. Acupuncture was administered at Zusanli acupoint on arthritis rats, and pain thresholds of the hindpaws were determined. Pharmacological tools or adeno-associated viruses were administered at the acupoints to interfere with targeting signals. Protein expression was determined with qRT-PCR, WB, or immunofluorescent labeling. Cultured keratinocytes, HaCaT line, were subjected to hypotonic shock to simulate needling stimulation. Extracellular ATP and adenosine levels were quantified using luciferase-luciferin assay and ELISA, respectively. Acupuncture-induced prompt analgesia was impaired by inhibiting CD39 activities to prevent the degradation of ATP to AMP but was mimicked by using CD39 agonists. Acupuncture-induced ATP accumulation exhibited synchronous changes. Similarly, acupuncture analgesia was hindered by suppressing CD73 to prevent the conversion of AMP to adenosine. Furthermore, the acupuncture effect was replicated by agonism at P2Y2Rs but inhibited by antagonism at them. Acupuncture upregulated CD73 and P2Y2Rs but not CD39. Immunofluorescent labeling demonstrated that keratinocytes were a primary site for these proteins. Shallow acupuncture also demonstrated antinociception. In vitro tests showed that hypotonic shock induced HaCaT cells to release ATP and adenosine, which was impaired by suppressing CD39 and CD73, respectively. Finally, agonism at P2Y2Rs promoted ATP release and [Ca<sup>2+</sup>]<sub>i</sub> rise. CD39 at the acupoints contributes to the analgesic mechanism of acupuncture. It may facilitate adenosine signaling in conjunction with CD73 or provide an appropriate ATP milieu for P2Y2Rs. Skin tissue may be one of the scenes for these signalings.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142627102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanosensitive release of ATP in the urinary bladder mucosa. 膀胱粘膜对 ATP 的机械敏感性释放。
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-11-14 DOI: 10.1007/s11302-024-10063-6
Violeta N Mutafova-Yambolieva
{"title":"Mechanosensitive release of ATP in the urinary bladder mucosa.","authors":"Violeta N Mutafova-Yambolieva","doi":"10.1007/s11302-024-10063-6","DOIUrl":"10.1007/s11302-024-10063-6","url":null,"abstract":"<p><p>The urinary bladder mucosa (urothelium and suburothelium/lamina propria) functions as a barrier between the content of the urine and the underlying bladder tissue. The bladder mucosa is also a mechanosensitive tissue that releases signaling molecules that affect functions of cells in the bladder wall interconnecting the mucosa with the detrusor muscle and the CNS. Adenosine 5'-triphosphate (ATP) is a primary mechanotransduction signal that is released from cells in the bladder mucosa in response to bladder wall distention and activates cell membrane-localized P2X and P2Y purine receptors on urothelial cells, sensory and efferent neurons, interstitial cells, and detrusor smooth muscle cells. The amounts of ATP at active receptor sites depend significantly on the amounts of extracellularly released ATP. Spontaneous and distention-induced release of ATP appear to be under differential control. This review is focused on mechanisms underlying urothelial release of ATP in response to mechanical stimulation. First, we present a brief overview of studies that report mechanosensitive ATP release in bladder cells or tissues. Then, we discuss experimental evidence for mechanosensitive release of urothelial ATP by vesicular and non-vesicular mechanisms and roles of the stretch-activated channels PIEZO channels, transient receptor potential vanilloid type 4, and pannexin 1. This is followed by brief discussion of possible involvement of calcium homeostasis modulator 1, acid-sensing channels, and connexins in the release of urothelial ATP. We conclude with brief discussion of limitations of current research and of needs for further studies to increase our understanding of mechanotransduction in the bladder wall and of purinergic regulation of bladder function.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142627103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electroacupuncture may alleviate inflammatory pain by downregulating the expression of P2Y14 receptor in the primary somatosensory cortex. 电针可通过下调初级躯体感觉皮层中 P2Y14 受体的表达来缓解炎性疼痛。
IF 3 4区 医学
Purinergic Signalling Pub Date : 2024-11-07 DOI: 10.1007/s11302-024-10058-3
Shuai Hou, Cui-Yuan Chen, Rui-Zhu Zhou, Liu-Xuan He, Xiao-Xiao Zhao, Sha-Sha Chen, Sha Yang, Hai-Yan Yin, Shu-Guang Yu
{"title":"Electroacupuncture may alleviate inflammatory pain by downregulating the expression of P2Y<sub>14</sub> receptor in the primary somatosensory cortex.","authors":"Shuai Hou, Cui-Yuan Chen, Rui-Zhu Zhou, Liu-Xuan He, Xiao-Xiao Zhao, Sha-Sha Chen, Sha Yang, Hai-Yan Yin, Shu-Guang Yu","doi":"10.1007/s11302-024-10058-3","DOIUrl":"https://doi.org/10.1007/s11302-024-10058-3","url":null,"abstract":"<p><p>Increasing evidence indicated that purinergic signalling involved in electroacupuncture (EA)-induced analgesia. Whether purinergic P2Y<sub>14</sub> receptor contributes to EA-mediated analgesia remains unclear. Here, we report that the expression of P2Y<sub>14</sub> receptor in the hindlimb region of the primary somatosensory cortex (S1HL) was significantly upregulated on Complete Freund's Adjuvant (CFA)-induced pain model mice, while was downregulated after EA treatment (2 Hz frequency, 1 mA intensity, and 30 min duration) at \"Zusanli\" (also named ST36 acupoint). EA-mediated analgesia could be reversed by injection of P2RY<sub>14</sub> agonist uridine diphosphate glucose (UDPG) into the bilateral S1HL, while prolonged by injection of P2RY<sub>14</sub> antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPTN). It suggested that EA may alleviate inflammatory pain by downregulating the expression of P2RY<sub>14</sub> in the S1HL.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信