Schwann cells transplantation improves nerve injury and alleviates neuropathic pain in rats.

IF 3 4区 医学 Q2 NEUROSCIENCES
Wen-Jun Zhang, Xi Li, Jun-Xiang Liao, Dong-Xia Hu, Song Huang
{"title":"Schwann cells transplantation improves nerve injury and alleviates neuropathic pain in rats.","authors":"Wen-Jun Zhang, Xi Li, Jun-Xiang Liao, Dong-Xia Hu, Song Huang","doi":"10.1007/s11302-024-10046-7","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanism of neuropathic pain induced by nerve injury is complex and there are no effective treatment methods. P2X4 receptor expression is closely related to the occurrence of pain. Schwann cells (SCs) play a key protective role in the repair of peripheral nerve injury and myelin sheath regeneration. However, whether SCs can affect the expression of P2X4 receptor and play a role in pathological pain is still unclear. Therefore, this study investigated the effect of SCs on whether they can down regulate the expression of P2X4 receptor to affect pain. The results showed that in the neuropathic pain induced by sciatic nerve injury model, the expression of P2X4 receptor in spinal cord tissue was significantly increased and the pain sensation of rats was increased. While SCs transplantation could down regulate the expression of P2X4 receptors in spinal cord and increase the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of rats. These data indicate that SCs can reduce the expression of P2X4 receptors to alleviate neuropathic pain, indicating that SCs can mediate P2X4 receptor signalling as a new target for pain treatment.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-024-10046-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanism of neuropathic pain induced by nerve injury is complex and there are no effective treatment methods. P2X4 receptor expression is closely related to the occurrence of pain. Schwann cells (SCs) play a key protective role in the repair of peripheral nerve injury and myelin sheath regeneration. However, whether SCs can affect the expression of P2X4 receptor and play a role in pathological pain is still unclear. Therefore, this study investigated the effect of SCs on whether they can down regulate the expression of P2X4 receptor to affect pain. The results showed that in the neuropathic pain induced by sciatic nerve injury model, the expression of P2X4 receptor in spinal cord tissue was significantly increased and the pain sensation of rats was increased. While SCs transplantation could down regulate the expression of P2X4 receptors in spinal cord and increase the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of rats. These data indicate that SCs can reduce the expression of P2X4 receptors to alleviate neuropathic pain, indicating that SCs can mediate P2X4 receptor signalling as a new target for pain treatment.

Abstract Image

许旺细胞移植可改善大鼠神经损伤并减轻神经性疼痛。
神经损伤引起的神经病理性疼痛机制复杂,目前尚无有效的治疗方法。P2X4 受体的表达与疼痛的发生密切相关。许旺细胞(SCs)在周围神经损伤修复和髓鞘再生中起着关键的保护作用。然而,SCs 是否能影响 P2X4 受体的表达并在病理性疼痛中发挥作用仍不清楚。因此,本研究探讨了SCs能否下调P2X4受体的表达以影响疼痛。结果表明,在坐骨神经损伤诱导的神经病理性疼痛模型中,脊髓组织中P2X4受体的表达明显增加,大鼠的痛觉增强。而移植SCs能降低脊髓中P2X4受体的表达,提高大鼠的机械退缩阈值(MWT)和热退缩潜伏期(TWL)。这些数据表明,SCs 可以降低 P2X4 受体的表达,从而缓解神经病理性疼痛,表明 SCs 可以介导 P2X4 受体信号,成为疼痛治疗的新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Purinergic Signalling
Purinergic Signalling 医学-神经科学
CiteScore
6.60
自引率
17.10%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信