巨噬细胞ATP代谢紊乱在二氧化硅诱导的肺纤维化中的作用

IF 3 4区 医学 Q2 NEUROSCIENCES
Hui-Jie Hu, Yuan-Yuan Fu, Shu-Ling Du, Yu-Han Zhang, Zhao-Qiang Zhang, Gui-Zhi Han
{"title":"巨噬细胞ATP代谢紊乱在二氧化硅诱导的肺纤维化中的作用","authors":"Hui-Jie Hu, Yuan-Yuan Fu, Shu-Ling Du, Yu-Han Zhang, Zhao-Qiang Zhang, Gui-Zhi Han","doi":"10.1007/s11302-025-10093-8","DOIUrl":null,"url":null,"abstract":"<p><p>Silicosis, a chronic lung disease, results from prolonged inhalation of silica dust (SiO<sub>2</sub>) in occupational environments, and its pathogenesis remains incompletely elucidated. Studies have shown that alveolar macrophages (AMs) play a pivotal role in its development. These AMs phagocytose the inhaled SiO<sub>2</sub>, which leads to morphological, structural, and functional abnormalities that result in lung fibrosis. During this process, adenosine triphosphate (ATP) not only provides energy for the physiological and pathological activities but also acts as a key intracellular and extracellular signaling molecule and regulates cytokine synthesis and secretion. This complex process has not been systematically summarized. In this study, first, the current data on ATP metabolism in the development of SiO<sub>2</sub>-induced pulmonary fibrosis are introduced. ATP metabolism disorder, caused by impaired production, utilization, or distribution of ATP, disrupts macrophage energy homeostasis. Then, how ATP metabolism disorder affects macrophage morphology and function and the inflammatory and fibrotic processes of the lungs by activating the P2X7 receptor-mediated ATP signaling pathway are discussed. Finally, current therapeutic strategies targeting ATP metabolism disorder and ATP signaling pathways in silicosis are summarized. In conclusion, SiO<sub>2</sub>-induced ATP metabolism disorder indirectly accelerates the progression of silicosis fibrosis.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of macrophage ATP metabolism disorder in SiO<sub>2</sub>‑induced pulmonary fibrosis: a review.\",\"authors\":\"Hui-Jie Hu, Yuan-Yuan Fu, Shu-Ling Du, Yu-Han Zhang, Zhao-Qiang Zhang, Gui-Zhi Han\",\"doi\":\"10.1007/s11302-025-10093-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silicosis, a chronic lung disease, results from prolonged inhalation of silica dust (SiO<sub>2</sub>) in occupational environments, and its pathogenesis remains incompletely elucidated. Studies have shown that alveolar macrophages (AMs) play a pivotal role in its development. These AMs phagocytose the inhaled SiO<sub>2</sub>, which leads to morphological, structural, and functional abnormalities that result in lung fibrosis. During this process, adenosine triphosphate (ATP) not only provides energy for the physiological and pathological activities but also acts as a key intracellular and extracellular signaling molecule and regulates cytokine synthesis and secretion. This complex process has not been systematically summarized. In this study, first, the current data on ATP metabolism in the development of SiO<sub>2</sub>-induced pulmonary fibrosis are introduced. ATP metabolism disorder, caused by impaired production, utilization, or distribution of ATP, disrupts macrophage energy homeostasis. Then, how ATP metabolism disorder affects macrophage morphology and function and the inflammatory and fibrotic processes of the lungs by activating the P2X7 receptor-mediated ATP signaling pathway are discussed. Finally, current therapeutic strategies targeting ATP metabolism disorder and ATP signaling pathways in silicosis are summarized. In conclusion, SiO<sub>2</sub>-induced ATP metabolism disorder indirectly accelerates the progression of silicosis fibrosis.</p>\",\"PeriodicalId\":20952,\"journal\":{\"name\":\"Purinergic Signalling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Purinergic Signalling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11302-025-10093-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-025-10093-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

矽肺病是一种慢性肺部疾病,由长期吸入二氧化硅粉尘(SiO2)引起,其发病机制尚未完全阐明。研究表明,肺泡巨噬细胞(alveolar macrophages, AMs)在其发展中起着关键作用。这些AMs吞噬吸入的SiO2,导致形态、结构和功能异常,导致肺纤维化。在这一过程中,三磷酸腺苷(adenosine triphosphate, ATP)不仅为生理和病理活动提供能量,而且是细胞内和细胞外的关键信号分子,调节细胞因子的合成和分泌。这个复杂的过程还没有得到系统的总结。在本研究中,首先介绍了目前关于ATP代谢在二氧化硅诱导的肺纤维化发展过程中的数据。ATP代谢紊乱是由ATP的产生、利用或分布受损引起的,破坏巨噬细胞的能量稳态。然后讨论ATP代谢紊乱如何通过激活P2X7受体介导的ATP信号通路影响巨噬细胞形态和功能以及肺的炎症和纤维化过程。最后,综述了目前针对矽肺ATP代谢紊乱和ATP信号通路的治疗策略。综上所述,二氧化硅诱导的ATP代谢紊乱间接加速了矽肺纤维化的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of macrophage ATP metabolism disorder in SiO2‑induced pulmonary fibrosis: a review.

Silicosis, a chronic lung disease, results from prolonged inhalation of silica dust (SiO2) in occupational environments, and its pathogenesis remains incompletely elucidated. Studies have shown that alveolar macrophages (AMs) play a pivotal role in its development. These AMs phagocytose the inhaled SiO2, which leads to morphological, structural, and functional abnormalities that result in lung fibrosis. During this process, adenosine triphosphate (ATP) not only provides energy for the physiological and pathological activities but also acts as a key intracellular and extracellular signaling molecule and regulates cytokine synthesis and secretion. This complex process has not been systematically summarized. In this study, first, the current data on ATP metabolism in the development of SiO2-induced pulmonary fibrosis are introduced. ATP metabolism disorder, caused by impaired production, utilization, or distribution of ATP, disrupts macrophage energy homeostasis. Then, how ATP metabolism disorder affects macrophage morphology and function and the inflammatory and fibrotic processes of the lungs by activating the P2X7 receptor-mediated ATP signaling pathway are discussed. Finally, current therapeutic strategies targeting ATP metabolism disorder and ATP signaling pathways in silicosis are summarized. In conclusion, SiO2-induced ATP metabolism disorder indirectly accelerates the progression of silicosis fibrosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Purinergic Signalling
Purinergic Signalling 医学-神经科学
CiteScore
6.60
自引率
17.10%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信