Radiation research最新文献

筛选
英文 中文
Abscopal Effects, Clastogenic Effects and Bystander Effects: 70 Years of Non-Targeted Effects of Radiation. 缺席效应、致畸效应和旁观者效应:辐射的非目标效应 70 年。
IF 2.5 3区 医学
Radiation research Pub Date : 2024-08-01 DOI: 10.1667/RADE-24-00040.1
Fiona M Lyng, Edouard I Azzam
{"title":"Abscopal Effects, Clastogenic Effects and Bystander Effects: 70 Years of Non-Targeted Effects of Radiation.","authors":"Fiona M Lyng, Edouard I Azzam","doi":"10.1667/RADE-24-00040.1","DOIUrl":"10.1667/RADE-24-00040.1","url":null,"abstract":"<p><p>In vitro and in vivo observations accumulated over several decades have firmly shown that the biological effects of ionizing radiation can spread from irradiated cells/tissues to non-targeted cells/tissues. Redox-modulated intercellular communication mechanisms that include a role for secreted factors and gap junctions, can mediate these non-targeted effects. Clearly, the expression of such effects and their transmission to progeny cells has implications for issues related to radiation protection. Their elucidation is also relevant towards enhancing the efficacy of cancer radiotherapy and reducing its impact on the development of normal tissue toxicities. In addition, the study of non-targeted effects is pertinent to our basic understanding of intercellular communications under conditions of oxidative stress. This review will trace the history of non-targeted effects of radiation starting with early reports of abscopal effects which described radiation induced effects in tissues distant from the site of radiation exposure. A related effect involved the production of clastogenic factors in plasma following irradiation which can induce chromosome damage in unirradiated cells. Despite these early reports suggesting non-targeted effects of radiation, the classical paradigm that a direct deposition of energy in the nucleus was required still dominated. This paradigm was challenged by papers describing radiation induced bystander effects. This review will cover mechanisms of radiation-induced bystander effects and the potential impacts on radiation protection and radiation therapy.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"355-367"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
"Lethal Mutations" a Misnomer or the Start of a Scientific Revolution? "致命突变 "是名不副实还是科学革命的开端?
IF 2.5 3区 医学
Radiation research Pub Date : 2024-08-01 DOI: 10.1667/RADE-24-00018.1
Carmel Mothersill, Rhea Desai, Colin B Seymour, Marc S Mendonca
{"title":"\"Lethal Mutations\" a Misnomer or the Start of a Scientific Revolution?","authors":"Carmel Mothersill, Rhea Desai, Colin B Seymour, Marc S Mendonca","doi":"10.1667/RADE-24-00018.1","DOIUrl":"10.1667/RADE-24-00018.1","url":null,"abstract":"<p><p>The aim of this paper is to review the history surrounding the discovery of lethal mutations, later described as delayed reproductive death. Lethal mutations were suggested very early on, to be due to a generalised instability in a cell population and are considered now to be one of the first demonstrations of \"radiation-induced genomic instability\" which led later to the establishment of the field of \"non-targeted effects.\" The phenomenon was first described by Seymour et al. in 1986 and was confirmed by Trott's group in Europe and by Little and colleagues in the United States before being extended by Mendonca et al. in 1989, who showed conclusively that the distinguishing feature of lethal mutation occurrence was that it happened suddenly after about 9-10 population doublings in progeny which had survived the original dose of ionizing radiation. However, many authors then suggested that in fact, lethal mutations were implicit in the original experiments by Puck and Marcus in 1956 and were described in the extensive work by Sinclair in 1964, who followed clonal progeny for up to a year after irradiation and described \"small colony formation\" as a persistent consequence of ionizing radiation exposure. In this paper, we examine the history from 1956 to the present using the period from 1986-1989 as an anchor point to reach into the past and to go forward through the evolution of the field of low dose radiobiology where non-targeted effects predominate.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"205-214"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dose Rate Effects from the 1950s through to the Era of FLASH. 从 20 世纪 50 年代到 FLASH 时代的剂量率效应。
IF 2.5 3区 医学
Radiation research Pub Date : 2024-08-01 DOI: 10.1667/RADE-24-00024.1
Kathryn D Held, Aimee L McNamara, Juliane Daartz, Mandar S Bhagwat, Bethany Rothwell, Jan Schuemann
{"title":"Dose Rate Effects from the 1950s through to the Era of FLASH.","authors":"Kathryn D Held, Aimee L McNamara, Juliane Daartz, Mandar S Bhagwat, Bethany Rothwell, Jan Schuemann","doi":"10.1667/RADE-24-00024.1","DOIUrl":"10.1667/RADE-24-00024.1","url":null,"abstract":"<p><p>Numerous dose rate effects have been described over the past 6-7 decades in the radiation biology and radiation oncology literature depending on the dose rate range being discussed. This review focuses on the impact and understanding of altering dose rates in the context of radiation therapy, but does not discuss dose rate effects as relevant to radiation protection. The review starts with a short historic review of early studies on dose rate effects, considers mechanisms thought to underlie dose rate dependencies, then discusses some current issues in clinical findings with altered dose rates, the importance of dose rate in brachytherapy, and the current timely topic of the use of very high dose rates, so-called FLASH radiotherapy. The discussion includes dose rate effects in vitro in cultured cells, in in vivo experimental systems and in the clinic, including both tumors and normal tissues. Gaps in understanding dose rate effects are identified, as are opportunities for improving clinical use of dose rate modulation.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"161-176"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426361/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What's Changed in 75 Years of RadRes? - An Australian Perspective on Selected Topics. 辐射研究 75 年来发生了什么变化?- 澳大利亚人对部分主题的看法。
IF 2.5 3区 医学
Radiation research Pub Date : 2024-08-01 DOI: 10.1667/RADE-24-00037.1
Olga A Martin, Pamela J Sykes, Martin Lavin, Elette Engels, Roger F Martin
{"title":"What's Changed in 75 Years of RadRes? - An Australian Perspective on Selected Topics.","authors":"Olga A Martin, Pamela J Sykes, Martin Lavin, Elette Engels, Roger F Martin","doi":"10.1667/RADE-24-00037.1","DOIUrl":"10.1667/RADE-24-00037.1","url":null,"abstract":"<p><p>Several scientific themes are reviewed in the context of the 75-year period relevant to this special platinum issue of Radiation Research. Two criteria have been considered in selecting the scientific themes. One is the exposure of the associated research activity in the annual meetings of the Radiation Research Society (RRS) and in the publications of the Society's Journal, thus reflecting the interest of members of RRS. The second criteria is a focus on contributions from Australian members of RRS. The first theme is the contribution of radiobiology to radiation oncology, featuring two prominent Australian radiation oncologists, the late Rod Withers and his younger colleague, Lester Peters. Two other themes are also linked to radiation oncology; preclinical research aimed at developing experimental radiotherapy modalities, namely microbeam radiotherapy (MRT) and Auger endoradiotherapy. The latter has a long history, in contrast to MRT, especially in Australia, given that the associated medical beamline at the Australian Synchrotron in Melbourne only opened in 2011. Another theme is DNA repair, which has a trajectory parallel to the 75-year period of interest, given the birth of molecular biology in the 1950s. The low-dose radiobiology theme has a similar timeline, predominantly prompted by the nuclear era, which is also connected to the radioprotector theme, although radioprotectors also have a long-established potential utility in cancer radiotherapy. Finally, two themes are associated with biodosimetry. One is the micronucleus assay, highlighting the pioneering contribution from Michael Fenech in Adelaide, South Australia, and the other is the γ-H2AX assay and its widespread clinical applications.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"309-327"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141535148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiation Chemistry and Radiation Research: A History from the Beginning to the Platinum Edition. 辐射化学与辐射研究:从开始到白金版的历史。
IF 2.5 3区 医学
Radiation research Pub Date : 2024-08-01 DOI: 10.1667/RADE-24-00053.1
John D Zimbrick
{"title":"Radiation Chemistry and Radiation Research: A History from the Beginning to the Platinum Edition.","authors":"John D Zimbrick","doi":"10.1667/RADE-24-00053.1","DOIUrl":"10.1667/RADE-24-00053.1","url":null,"abstract":"<p><p>At the dawn of the 20th Century, the underlying chemistry that produced the observed effects of ionizing radiation, e.g., X rays and Radium salts, on aqueous solutions was either unknown or restricted to products found postirradiation. For example, the Curies noted that sealed aqueous solutions of Radium inexplicably decomposed over time, even when kept in the dark. By 1928 there were numerous papers describing the phenomenological effects of ionizing radiation on a wide variety of materials, including the irradiated hands of early radiologists. One scientist who became intensely interested in these radiation effects was Hugo Fricke (Fricke Dosimetry) who established a laboratory in 1928 dedicated to studies on chemical effects of radiation, the results of which he believed were necessary to understand observed radiobiological effects. In this Platinum Issue of Radiation Research (70 years of continuous publication), we present the early history of the development of radiation chemistry and its contributions to all levels of mechanistic radiobiology. We summarize its development as one of the four disciplinary pillars of the Radiation Research Society and its Journal, Radiation Research, founded during the period 1952-1954. In addition, the work of scientists who contributed substantially to the discipline of Radiation Chemistry and to the birth, life and culture of the Society and its journal is presented. In the years following 1954, the increasing knowledge about the underlying temporal and spatial properties of the species produced by various types of radiation is summarized and related to its radiobiology and to modern technologies (e.g., pulsed radiolysis, electron paramagnetic resonance) which became available as the discipline of radiation chemistry developed. A summary of important results from these studies on Radiation Chemistry/Biochemistry in the 20th and 21st Century up to the present time is presented. Finally, we look into the future to see what possible directions radiation chemistry studies might take, based upon promising current research. We find at least two possible directions that will need radiation chemistry expertise to ensure proper experimental design and interpretation of data. These are FLASH radiotherapy, and mechanisms underlying the effects of low doses of radiation delivered at low dose rates. Examples of how radiation chemists could provide beneficial input to these studies are provided.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"368-384"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dosimetry: Was and Is an Absolute Requirement for Quality Radiation Research. 剂量测定:过去和现在都是高质量辐射研究的绝对要求。
IF 2.5 3区 医学
Radiation research Pub Date : 2024-08-01 DOI: 10.1667/RADE-24-00107.1
Daniel Johnson, H Harold Li, Bruce F Kimler
{"title":"Dosimetry: Was and Is an Absolute Requirement for Quality Radiation Research.","authors":"Daniel Johnson, H Harold Li, Bruce F Kimler","doi":"10.1667/RADE-24-00107.1","DOIUrl":"10.1667/RADE-24-00107.1","url":null,"abstract":"<p><p>This review aims to trace the evolution of dosimetry, highlight its significance in the advancement of radiation research, and identify the current trends and methodologies in the field. Key historical milestones, starting with the first publications in the journal in 1954, will be synthesized before addressing contemporary practices in radiation medicine and radiobiological investigation. Finally, possibilities for future opportunities in dosimetry will be offered. The overarching goal is to emphasize the indispensability of accurate and reproducible dosimetry in enhancing the quality of radiation research and practical applications of ionizing radiation.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"102-129"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Release of Radioactive Particles to the Environment. 向环境释放放射性粒子。
IF 2.5 3区 医学
Radiation research Pub Date : 2024-08-01 DOI: 10.1667/RADE-24-00016.1
Brit Salbu
{"title":"Release of Radioactive Particles to the Environment.","authors":"Brit Salbu","doi":"10.1667/RADE-24-00016.1","DOIUrl":"10.1667/RADE-24-00016.1","url":null,"abstract":"<p><p>When environmental impact and risks associated with radioactive contamination of ecosystems are assessed, the source term and deposition must be linked to ecosystem transfer, biological uptake and effects in exposed organisms. Thus, a well-defined source term is the starting point for transport, dose, impact and risk models. After the Chornobyl accident, 3-4 tons of spent nuclear fuel were released and radioactive particles were important ingrediencies of the actual source term. As Chornobyl particles were observed in many European countries, some scientists suggested that radioactive particles were \"a peculiarity of the Chornobyl accident.\" In contrast, research over the years has shown that a major fraction of refractory elements such as uranium (U) and plutonium (Pu) released to the environment has been released as particles following a series of past events such as nuclear weapons tests, non-criticality accidents involving nuclear weapons, military use of depleted uranium ammunition, and nuclear reactor accidents. Radioactive particles and colloids have also been observed in discharges from nuclear installations to rivers or to regional seas and are associated with nuclear waste dumped at sea. Furthermore, radioactive particles have been identified at uranium mining and tailing sites as well as at other NORM sites such as phosphate or oil and gas industrial facilities. Research has also demonstrated that particle characteristics such as elemental composition depend on the emitting source, while characteristics such as size distribution, structure, and oxidation state influencing ecosystem transfer will also depend on the release scenarios. Thus, access to advanced particle characteristic techniques is essential within radioecology. After deposition, localized heterogeneities such as particles will be unevenly distributed in the environment. Thus, inventories can be underestimated, and impact and risk assessments of particle contaminated areas may suffer from unacceptable large uncertainties if radioactive particles are ignored. The present paper will focus on key sources contributing to the release of radioactive particles to the environments, as well as linking particle characteristics to ecosystem behavior and potential biological effects.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"260-272"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling Cellular Response to Ionizing Radiation: Mechanistic, Semi-Mechanistic, and Phenomenological Approaches - A Historical Perspective. 模拟细胞对电离辐射的反应:机理、半机理和现象学方法--历史视角。
IF 2.5 3区 医学
Radiation research Pub Date : 2024-08-01 DOI: 10.1667/RADE-24-00019.1
Reza Taleei, Shirin Rahmanian, Hooshang Nikjoo
{"title":"Modelling Cellular Response to Ionizing Radiation: Mechanistic, Semi-Mechanistic, and Phenomenological Approaches - A Historical Perspective.","authors":"Reza Taleei, Shirin Rahmanian, Hooshang Nikjoo","doi":"10.1667/RADE-24-00019.1","DOIUrl":"10.1667/RADE-24-00019.1","url":null,"abstract":"<p><p>Radiation research is a multidisciplinary field, and among its many branches, mathematical and computational modelers have played a significant role in advancing boundaries of knowledge. A fundamental contribution is modelling cellular response to ionizing radiation as that is the key to not only understanding how radiation can kill cancer cells, but also cause cancer and other health issues. The invention of microdosimetry in the 1950s by Harold Rossi paved the way for brilliant scientists to study the mechanism of radiation at cellular and sub-cellular scales. This paper reviews some snippets of ingenious mathematical and computational models published in microdosimetry symposium proceedings and publications of the radiation research community. Among these are simulations of radiation tracks at atomic and molecular levels using Monte Carlo methods, models of cell survival, quantification of the amount of energy required to create a single strand break, and models of DNA-damage-repair. These models can broadly be categorized into mechanistic, semi-mechanistic, and phenomenological approaches, and this review seeks to provide historical context of their development. We salute pioneers of the field and great teachers who supported and educated the younger members of the community and showed them how to build upon their work.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"143-160"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting the Historic Strontium-90 Ingestion Beagle Study Conducted at the University of California Davis: Opportunity in Archival Materials. 重新审视加州大学戴维斯分校开展的历史性锶-90 摄食比格尔研究:档案资料中的机遇。
IF 2.5 3区 医学
Radiation research Pub Date : 2024-08-01 DOI: 10.1667/RADE-24-000022.1
Alexander D Glasco, Lori A Snyder, Tatjana Paunesku, Sara C Howard, David A Hooper, Ashley P Golden, Gayle E Woloschak
{"title":"Revisiting the Historic Strontium-90 Ingestion Beagle Study Conducted at the University of California Davis: Opportunity in Archival Materials.","authors":"Alexander D Glasco, Lori A Snyder, Tatjana Paunesku, Sara C Howard, David A Hooper, Ashley P Golden, Gayle E Woloschak","doi":"10.1667/RADE-24-000022.1","DOIUrl":"10.1667/RADE-24-000022.1","url":null,"abstract":"<p><p>Strontium-90 is a radionuclide found in high concentrations in nuclear reactor waste and nuclear fallout from reactor accidents and atomic bomb explosions. In the 1950s, little was known regarding the health consequences of strontium-90 internalization. To assess the health effects of strontium-90 ingestion in infancy through adolescence, the Atomic Energy Commission and Department of Energy funded large-scale beagle studies at the University of California Davis. Conducted from 1956 to 1989, the strontium-90 ingestion study followed roughly 460 beagles throughout their lifespans after they were exposed to strontium-90 in utero (through feeding of the mother) and fed strontium-90 feed at varying doses from weaning to age 540 days. The extensive medical data and formalin-fixed paraffin-embedded tissues were transferred from UC Davis to the National Radiobiology Archive in 1992 and subsequently to the Northwestern University Radiobiology Archive in 2010. Here, we summarize the design of the strontium-90 ingestion study and give an overview of its most frequent recorded findings. As shown before, radiation-associated neoplasias (osteosarcoma, myeloproliferative syndrome and select squamous cell carcinomas) were almost exclusively observed in the highest dose groups, while the incidence of neoplasias most frequent in controls decreased as dose increased. The occurrence of congestive heart failure in each dose group, not previously assessed by UC Davis researchers, showed a non-significant increase between the controls and lower dose groups that may have been significant had sample sizes been larger. Detailed secondary analyses of these data and samples may uncover health endpoints that were not evaluated by the team that conducted the study.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"289-308"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369998/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Historical Survey of Key Epidemiological Studies of Ionizing Radiation Exposure. 电离辐射暴露主要流行病学研究的历史调查。
IF 2.5 3区 医学
Radiation research Pub Date : 2024-08-01 DOI: 10.1667/RADE-24-00021.1
Mark P Little, Dimitry Bazyka, Amy Berrington de Gonzalez, Alina V Brenner, Vadim V Chumak, Harry M Cullings, Robert D Daniels, Benjamin French, Eric Grant, Nobuyuki Hamada, Michael Hauptmann, Gerald M Kendall, Dominique Laurier, Choonsik Lee, Won Jin Lee, Martha S Linet, Kiyohiko Mabuchi, Lindsay M Morton, Colin R Muirhead, Dale L Preston, Preetha Rajaraman, David B Richardson, Ritsu Sakata, Jonathan M Samet, Steven L Simon, Hiromi Sugiyama, Richard Wakeford, Lydia B Zablotska
{"title":"A Historical Survey of Key Epidemiological Studies of Ionizing Radiation Exposure.","authors":"Mark P Little, Dimitry Bazyka, Amy Berrington de Gonzalez, Alina V Brenner, Vadim V Chumak, Harry M Cullings, Robert D Daniels, Benjamin French, Eric Grant, Nobuyuki Hamada, Michael Hauptmann, Gerald M Kendall, Dominique Laurier, Choonsik Lee, Won Jin Lee, Martha S Linet, Kiyohiko Mabuchi, Lindsay M Morton, Colin R Muirhead, Dale L Preston, Preetha Rajaraman, David B Richardson, Ritsu Sakata, Jonathan M Samet, Steven L Simon, Hiromi Sugiyama, Richard Wakeford, Lydia B Zablotska","doi":"10.1667/RADE-24-00021.1","DOIUrl":"10.1667/RADE-24-00021.1","url":null,"abstract":"<p><p>In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"432-487"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316622/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信