Ellen E Quillen, George W Schaaf, Jamie N Justice, Gregory O Dugan, Brendan Johnson, Colin Reed, John D Olson, J Mark Cline
{"title":"Widespread Multimorbidity in a Cohort of Aging, Radiation-exposed Rhesus Macaques.","authors":"Ellen E Quillen, George W Schaaf, Jamie N Justice, Gregory O Dugan, Brendan Johnson, Colin Reed, John D Olson, J Mark Cline","doi":"10.1667/RADE-24-00014.1","DOIUrl":"https://doi.org/10.1667/RADE-24-00014.1","url":null,"abstract":"<p><p>Delayed effects of acute radiation exposure (DEARE) and radiation late effects are a suite of conditions that become apparent months to years after initial exposure to radiation in both humans and non-human primates. Many of these disorders, including cardiac complications, insulin resistance, bone loss, hypertension, and others, are also more common among aging cohorts independent of radiation exposure. This study characterized disease incidence, age of onset, and multimorbidity for 20 common, chronic diseases in 226 irradiated and 51 control rhesus macaques (Macaca mulatta) from the Wake Forest Non-Human Primate Radiation Late Effects Cohort (RLEC) to identify the excess risk of chronic disease caused by radiation-induced tissue damage. Irradiated animals were exposed to 4.0-8.5 Gy of ionizing radiation (mean 6.17 ± 1.29 Gy) one year on average prior to joining the cohort. In addition to the acute impact of early-life irradiation, these animals have been aging postirradiation for up to 15 years (mean 5.2 ± 3.0 years). Lifespan is an average of 5.1 years shorter in irradiated animals and radiation is associated with significantly increased rates of periodontitis, cataracts, testicular atrophy, tumors, diabetes, and brain lesions. While most of these chronic diseases occur in non-irradiated macaques, irradiated animals have significantly earlier age of onset for periodontitis, cataracts, bone loss, being overweight, and arthritis. This accelerated onset leads to 2.9 ± 1.9 comorbid conditions among irradiated animals compared to 1.9 ± 1.2 diagnoses among controls by young adulthood (age 8) and 5.2 ± 2.4 compared to 3.4 ± 1.8 conditions by middle age (15 years). Subsets of these comorbid conditions cluster among animals with fibrosis-related disorders (diabetes, lung injury, liver disease, kidney disease, heart disease, and tumors) commonly diagnosed together independent of prevalence. A second cluster of comorbidities centers around bone loss and is associated with being underweight and female reproductive problems. While there are significant differences in disease burden between irradiated and control animals, there was no dose effect of radiation on lifespan, age to first diagnosis, or comorbidities and substantial heterogeneity across each of these measures. This underlying heterogeneity in response to radiation suggests the existence of a yet unidentified determinant of resilience.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brendan J Johnson, Rachel N Andrews, John D Olson, J Mark Cline
{"title":"Radiation-induced Brain Injury and the Radiation Late Effects Cohort (RLEC) of Rhesus Macaques (Macaca mulatta).","authors":"Brendan J Johnson, Rachel N Andrews, John D Olson, J Mark Cline","doi":"10.1667/RADE-24-00033.1","DOIUrl":"https://doi.org/10.1667/RADE-24-00033.1","url":null,"abstract":"<p><p>In the event of a nuclear accident or attack, thousands of people could receive high doses of total-body irradiation (TBI). Although retrospective analyses of atomic bomb and nuclear disaster survivors have been conducted, the long-term outcomes on the brain and cognitive function are conflicting. Radiation-induced brain injury (RIBI) is characterized by inflammation, vascular injury, deficits in neuronal function, and white matter (WM) injury, but the molecular mechanisms by which this occurs remain unknown. Animal models are crucial for evaluating radiation effects on the brain and have provided significant insight into the pathogenesis of RIBI. Rodents are the most commonly utilized animal models in radiation research, and much has been gleaned from these animals. Non-human primates (NHPs) are the closest genetically, anatomically, and physiologically to humans and therefore represent a valuable resource in translational neuroscience. NHPs have been utilized in radiation studies for several decades and continue to be important models of RIBI, yet few studies have evaluated the long-term impact of radiation on neurocognitive function. The Radiation Late Effects Cohort (RLEC) is a group of rhesus macaques dedicated to evaluating the long-term effects of TBI on multiple systems, including the nervous system. Studies have demonstrated that animals within the RLEC manifest shared patterns of injury between macaques and humans after fractionated whole-brain irradiation (WBI), including vascular injury, neuroinflammation, and WM injury. While pathological outcomes in late-delayed RIBI have been well characterized, studies evaluating the functional outcomes in NHPs are scarce, highlighting the need for future studies. Correlating relevant structural and functional outcomes are critical for identifying targets involved in the pathogenesis of injury. Much information has been gleaned from animal studies of RIBI, and NHPs, particularly those in the RLEC will continue to be valuable models in translational neuroscience.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingyun Lee, Xiaofei Chen, Katherine M Fanning, Catherine Si, Ashley T Davis, David H Wasserman, Deanna Bracy, Cristina M Furdui, Kylie Kavanagh
{"title":"Persistent Postirradiation Skeletal Muscle Protein and Insulin Sensitivity Changes in Nonhuman Primates.","authors":"Jingyun Lee, Xiaofei Chen, Katherine M Fanning, Catherine Si, Ashley T Davis, David H Wasserman, Deanna Bracy, Cristina M Furdui, Kylie Kavanagh","doi":"10.1667/RADE-23-00223.1","DOIUrl":"https://doi.org/10.1667/RADE-23-00223.1","url":null,"abstract":"<p><p>Increased incidence of diabetes has been reported after whole-body irradiation in cancer survivors and in the years after exposure in research studies of nonhuman primates. Type 2 diabetes presents in the absence of obesity and suggests that skeletal muscle, the predominant organ responsible for minute-to-minute glucose disposal, is persistently dysfunctional. We evaluated skeletal muscle (SkM) from control (CTL, n = 8) and irradiated (IRRAD, n = 16) male rhesus macaques (Macaca mulatta) that had been exposed to an average whole-body dose of 6.5 Gy after an average of 4 years of follow-up. Irradiated animals had deficient SkM basal and insulin-stimulated receptor activation that was unrelated to histologically assessed fiber size, extracellular matrix and endothelial components. Protein extracted from irradiated muscle showed that Akt2, downstream of insulin receptor activation, was sulfenyl-modified and thus a target for radiation-related glycemic dysregulation. Shotgun proteomics identified upregulation of many mitochondrial and peroxisome-associated proteins, and increases were confirmed by immunoblotting of select protein targets. Proteomic pathway enrichment mapping showed distinct protein clustering between CTL and IRRAD groups. Mitochondrial proteins were surveyed and confirm that mitochondrial turnover may be increased after irradiation with higher fission and fusion markers. The results indicate that irradiated muscle is persistently insulin resistant, with evidence of intracellular protein oxidation and shifts in mitochondrial dynamics and function.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143575822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erica L Stover, Michelle L Rock, John D Olson, George W Schaaf, Thomas H Oguin, J Mark Cline, Andrew N Macintyre
{"title":"The Long-term Effects of Acute Total-Body Irradiation on Pre-irradiation Measles-vaccine-induced Immunological Memory.","authors":"Erica L Stover, Michelle L Rock, John D Olson, George W Schaaf, Thomas H Oguin, J Mark Cline, Andrew N Macintyre","doi":"10.1667/RADE-23-00203.1","DOIUrl":"https://doi.org/10.1667/RADE-23-00203.1","url":null,"abstract":"<p><p>Acute total-body irradiation (TBI) leads to transient dose-dependent lymphopenia. While lymphocyte numbers gradually recover, there remain subtle but long-lasting changes to B and T cell populations years after radiation exposure. The degree to which immunological memory is retained after TBI is unknown; however, it is conceivable that vaccine-induced protective immunity is jeopardized. To test this hypothesis, samples were collected from a cohort of rhesus macaques that were vaccinated against measles virus, irradiated, and then allowed to recover from the acute radiation effects for at least a year. Animals received 0 to 7.5 Gy TBI or 10 Gy with 5% bone marrow shielding. Plasma from 109 animals were evaluated for measles-binding antibodies and the ability to neutralize live measles virus. Females exhibited higher measles binding and neutralizing titers, and irradiated animals of both sexes exhibited significant radiation-dose dependent reductions in measles binding IgG and neutralizing titers. Peripheral blood mononuclear cells (PBMC) from the vaccinated, irradiated animals were then stimulated in vitro with measles antigens to evaluate cellular responses. No radiation-dose effects on CD8 T cell responses to measles antigens were detected. In contrast, PBMC from vaccinated, irradiated males exhibited radiation dose-dependent reductions in the percentages of CD4 T cells expressing activation-associated markers and cytokines in response to measles antigens. There were also significant dose- or dose/sex-interacting effects on the levels of IP10, MIP1β, and IL-6 present in the antigen-stimulated PBMC cultures. Cells from animals receiving 10 Gy with 5% bone marrow shielding exhibited signs of T-cell anergy. PBMC from females exhibited only weak responses to measles antigen stimulation regardless of radiation exposure. Collectively, these in vitro studies indicate that radiation can cause protracted dose- and sex-dependent damage to established humoral and cellular immunological memories of measles.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xueyan Zhang, Li Zhao, Shaohua Hu, Congcong Miao, Ji Dong, Jing Zhang, Binwei Yao, Yan Lv, Ruiyun Peng
{"title":"Protective Effects and Mechanisms of Astragaloside on Microwave Radiation-induced Cardiac Injury.","authors":"Xueyan Zhang, Li Zhao, Shaohua Hu, Congcong Miao, Ji Dong, Jing Zhang, Binwei Yao, Yan Lv, Ruiyun Peng","doi":"10.1667/RADE-23-00103.1","DOIUrl":"10.1667/RADE-23-00103.1","url":null,"abstract":"<p><p>This study explores the potential protective effects and mechanisms of astragaloside (AST) on microwave radiation-induced cardiac injury. Rats and H9c2 cells were irradiated with S-band microwave to induce in vivo and in vitro cardiac injury models. In irradiated rats, experiments such as electrophysiological examination, serum biochemical analysis, hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), western blot, and immunohistochemical staining were performed after AST were administrated for 7 and/or 14 days. In irradiated H9c2 cells that were pretreated with 1-Azakenpaullone (glycogen synthase kinase-3β inhibitor) or AST, experiments such as TEM, cell counting kit-8 assay, western blot, tetramethylrhodamine methylester staining, and determination of reactive oxygen species (ROS), adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP) were performed. In vivo results showed that at 7 days after exposure, microwave radiation-induced severe cardiac injury (as evidenced by abnormal electrocardiograms and cardiac tissue structure, increased serum myocardial enzyme activities and Ca2+ concentration) and lower level of phosphorylation of glycogen synthase kinase-3β (p-GSK-3βSer9). All these changes were reversed after AST treatment. The results of in vitro experiments showed that microwave radiation induced a lower level of p-GSK-3βSer9, more mitochondrial permeability transition pore (mPTP) opening and more serious mitochondrial dysfunction (characterized by increased intracellular ROS production, decreased intracellular ATP synthesis and MMP decline) in H9c2 cells. All these changes were reversed by 1-Azakenpaullone and AST pretreatment. The findings suggest that AST could shield against microwave radiation-induced cardiac injury by promoting the phosphorylation of GSK-3βSer9, thereby inhibiting mPTP opening and restoring mitochondrial function. This study offers valuable insights into potential therapeutic strategies for mitigating the adverse effects of microwave radiation on cardiac health.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"142-154"},"PeriodicalIF":2.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143256423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shota Shimizu, Tatsuhiko Sato, Sachiyo Funamoto, Richard Sposto, Harry M Cullings, Akira Endo, Stephen D Egbert, Michiaki Kai
{"title":"Calculations of Mean Quality Factors and Their Implications for Organ-specific Relative Biological Effectiveness (RBE) in Analysis of Radiation-related Risk in the Atomic Bomb Survivors.","authors":"Shota Shimizu, Tatsuhiko Sato, Sachiyo Funamoto, Richard Sposto, Harry M Cullings, Akira Endo, Stephen D Egbert, Michiaki Kai","doi":"10.1667/RADE-24-00199.1","DOIUrl":"https://doi.org/10.1667/RADE-24-00199.1","url":null,"abstract":"<p><p>Past and current estimates of relative biological effectiveness (RBE) from the cohort analyses of atomic bomb survivors suggested not only that RBE may be much higher than those assessed by the United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR) and International Commission on Radiological Protection (ICRP), but also that RBE may differ by organ and organ depth. This is at least partly due to how the ratio of neutron to gamma-ray dose changes with organ depth because of the more rapid attenuation of neutrons in tissue. Additionally, the RBE estimates from Life Span Study (LSS) data depend on the total dose and the neutron/gamma ratio. To further examine this issue, we calculated the mean quality factor based on Linear Energy Transfer (LET) distributions for representative organs and exposure scenarios of A-bomb survivors using Particle and Heavy Ion Transport code System (PHITS) simulation and the radiation quality factor [Q(L) relationship] defined by ICRP, as well as the Quality Factor (QF) function defined by the National Aeronautics and Space Administration (NASA). This is done in the context of the adult male phantom of the J45 series, which was created to precisely reproduce the anatomy of the Japanese population in 1945. We also investigate the depth dependence of the mean quality factors in the International Commission on Radiation Units and Measurements (ICRU) sphere irradiated by mono-energetic neutrons. Both the results from the human phantom, and from the ICRU sphere phantom suggest that the mean quality factors are approximately 15 and independent of the organ type, body depth, city and ground range when the contributions from the secondary γ rays are excluded from the neutron doses. We also discuss reasons that RBE estimates from cohort analyses are generally much larger than those based on the mean quality factors.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":"203 3","pages":"155-162"},"PeriodicalIF":2.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Partial-body Models of Radiation Exposure.","authors":"M Sproull, K Camphausen","doi":"10.1667/RADE-24-00189.1","DOIUrl":"10.1667/RADE-24-00189.1","url":null,"abstract":"<p><p>The events of 9/11 sparked a revitalization of civil defense in the U.S. for emergency planning and preparedness for future radiological or nuclear event scenarios and specifically for mass casualty medical management of radiation exposure and injury. Research in medical countermeasure development in the form of novel pharmaceuticals to treat radiation injury and new radiation biodosimetry diagnostics, primarily focused on development of research models of uniform total-body irradiation (TBI). With the success of those models, it was recognized that most radiation exposures in the field will involve non-uniform heterogeneous irradiations and many partial-body or organ-specific irradiation models have been utilized. This review examines partial-body models of irradiations developed in the last decade for heterogeneous radiation exposures and organ-specific radiation exposure patterns. These research models have been used to further our understanding of radiation injury, novel medical countermeasures and biodosimetry diagnostics in development for future radiological and nuclear event scenarios.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"129-141"},"PeriodicalIF":2.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Sommer, F Heinzl, P Scholz-Kreisel, D Wollschläger, C Heumann, N Fenske
{"title":"Lifetime Risks for Lung Cancer due to Occupational Radon Exposure: A Systematic Analysis of Estimation Components.","authors":"M Sommer, F Heinzl, P Scholz-Kreisel, D Wollschläger, C Heumann, N Fenske","doi":"10.1667/RADE-24-00060.1","DOIUrl":"10.1667/RADE-24-00060.1","url":null,"abstract":"<p><p>Lifetime risk estimates play a key role in many areas of radiation research. Here, the focus is on the lifetime excess absolute risk (LEAR) for dying from lung cancer due to occupational radon exposure based on uranium miners cohort studies. The major components in estimating LEAR were systematically varied to investigate the variability and uncertainties of results. Major components of the LEAR calculation are baseline mortality rates for lung cancer and all causes of death, risk model and exposure scenario. Sex-averaged mortality rates were chosen from a mixed Euro-American-Asian population, in addition to mortality rates to represent heavy and light smokers. Seven radon-related lung cancer risk models derived from different uranium miners cohorts were compared. As exposure scenarios, occupational exposure of two working level months (WLM) from age 18-64 years was considered, and three scenarios from the German uranium miners cohort. Further components were modified in sensitivity analyses. The LEAR was compared to other lifetime risk measures. With a range from less than 0.6 × 10-4 to over 8.0 × 10-4, LEAR per WLM estimates were influenced heavily by the choice of risk models. Notably, mortality rates, particularly lung cancer mortality rates, had a strong impact on LEAR per WLM across all models. The LEAR per WLM exhibited only low variation to changes in exposure scenarios for all risk models, except for the BEIR VI model fitted on the pooled 11 miners study. All assessed lifetime risk measures displayed a monotonically increasing relationship between exposure and lifetime risk at low to moderate exposures, with minor differences between ELR, REID, and LEAR (all per WLM). RADS yields the largest lifetime risk estimates in most situations. There is substantial variation in LEAR per WLM estimates depending on the choice of underlying calculation components. Reference populations and mortality rates should be selected with care depending on the application of lifetime risk calculations. The explicit choice of the lifetime risk measure was found to be negligible. These findings should be taken into consideration when using lifetime risk measures for radiation protection policy purposes.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"175-187"},"PeriodicalIF":2.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143067489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesca Luoni, Uli Weber, Alica Karin Lang, Moritz Westermayer, Felix Horst, Marcello Baricco, Luca Bocchini, Martina Giraudo, Giovanni Santin, Christoph Schuy, Marco Durante, Daria Boscolo
{"title":"Dose Build-up of High-energy 1H and 4He Ions in Standard, Innovative and In Situ Shielding Materials for Space Radiation: Measurements and Simulations.","authors":"Francesca Luoni, Uli Weber, Alica Karin Lang, Moritz Westermayer, Felix Horst, Marcello Baricco, Luca Bocchini, Martina Giraudo, Giovanni Santin, Christoph Schuy, Marco Durante, Daria Boscolo","doi":"10.1667/RADE-24-00244.1","DOIUrl":"10.1667/RADE-24-00244.1","url":null,"abstract":"<p><p>Galactic cosmic rays (GCR) are among the biggest hindrances to crewed space exploration. The ions contributing the most to fluence and absorbed dose in free space are 1H and 4He. In addition, their contribution to dose equivalent increases behind thick shields. In this work, the results of depth-dose measurements performed with high-energy 1H and 4He ions (2 GeV and 480 MeV 1H, and 430 MeV/u 4He) in structural (aluminum alloy), standard (PMMA and high-density polyethylene), innovative (lithium hydride) and in situ (Moon regolith simulant) shielding materials are presented. A strong dose build-up effect, due to target fragments and secondary protons, is observed in the first part of the Bragg curve for all the tested ion beams. The experimental results are compared to the Monte Carlo simulation tools most used for radiation protection in space, i.e., different physics lists of Geant4, PHITS, and FLUKA.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"163-174"},"PeriodicalIF":2.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ya Heng, Feifei Wang, Zhonghui Zhang, Zebang Lin, Dahai Zhao, Qiuling Li
{"title":"PRMT7 Inhibitor SGC3027 Enhances Radiotherapy Efficacy via Activating ATM Kinase in Non-Small Cell Lung Carcinoma.","authors":"Ya Heng, Feifei Wang, Zhonghui Zhang, Zebang Lin, Dahai Zhao, Qiuling Li","doi":"10.1667/RADE-24-00242.1","DOIUrl":"https://doi.org/10.1667/RADE-24-00242.1","url":null,"abstract":"<p><p>Non-small-cell lung cancer (NSCLC) is the leading cause of tumor-related death in humans. Radiotherapy is a crucial strategy for NSCLC treatment, although its effectiveness is limited by the radio-resistance of tumor cells. Our current research finds that the protein arginine methyltransferase 7 (PRMT7) is upregulated in NSCLC and correlates with poor prognosis. Pharmacological inhibition of PRMT7 by SGC3027, a specific small-molecule PRMT7 inhibitor, suppresses the proliferation, migration and invasion of NSCLC. Combining irradiation with SGC3027 strengthens the impact of irradiation on the biological behaviors of NSCLC cells. We also find that SGC3027 specifically activates ATM kinase and its downstream cell cycle checkpoint kinases to enhance radiobiological response in NSCLC. These findings underscore the promising therapeutic potential of PRMT7 inhibitors as well as combining PRMT7 inhibition with irradiation exposure for effective NSCLC therapies.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143524037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}