小鼠脑伽玛刀放射手术实验平台的建立。

IF 2.5 3区 医学 Q2 BIOLOGY
Yueshan Feng, Jiaxing Yu, Lixin Xu, Haohan Lu, Hongyun Zhang, Zhengsong Li, Roberta Kungulli, Tao Hong, Mo Zhang, Jie Lu, Hongqi Zhang, Sishi Xiang
{"title":"小鼠脑伽玛刀放射手术实验平台的建立。","authors":"Yueshan Feng, Jiaxing Yu, Lixin Xu, Haohan Lu, Hongyun Zhang, Zhengsong Li, Roberta Kungulli, Tao Hong, Mo Zhang, Jie Lu, Hongqi Zhang, Sishi Xiang","doi":"10.1667/RADE-24-00198.1","DOIUrl":null,"url":null,"abstract":"<p><p>The limited availability of post-Gamma Knife radiosurgery (GKRS) samples and the unsuitability of clinical GKRS devices for small animals highlight the need to develop devices that enable the application of a clinical GKRS device in mouse models. This study introduces a novel platform specifically designed for utilizing the Leksell Gamma Knife in mouse studies. The 3D-printed device comprises a positioning platform and a head fixation device. Six-week-old C57BL/6N mice underwent irradiation targeting the left caudate putamen (CPu) or left anterior frontobase areas. Clinical Gamma Knife prescription doses (central radiation doses of 80 Gy, 60 Gy, 50 Gy, 40 Gy, 20 Gy, and 10 Gy) were administered as single exposures. Dose conversion experiments confirmed that the actual radiation dose delivered to mice was consistently 1.5-fold higher than the planned clinical dose. MRI and H&E staining revealed clear radiation necrosis (RN) in the targeted areas when the planned clinical dose of 80 Gy was applied to the CPu and anterior frontobase, confirming the device's accuracy. γ-H2AX staining showed significant DNA double-strand breaks in the targeted region, particularly after a planned clinical dose of 40 Gy and higher. H&E staining also indicated parenchymal hemorrhage, tissue loss, and edema in the targeted areas among groups exposed to the planned clinical central doses of 80 Gy, 60 Gy, and 50 Gy. Immunofluorescence staining of CD68, IBA1, and NeuN showed significant neuroinflammation in the targeted areas of the high-dose groups (planned clinical doses of 80 Gy, 60 Gy, 50 Gy, or 40 Gy), characterized by increased microglia activation, macrophage infiltration, and neuronal death. This study developed a novel mouse platform for the Leksell Gamma Knife, enabling precise GKRS in mouse brains. For adult C57BL/6N mice, a planned clinical central dose of 40 Gy may be considered a suitable threshold for radiation-induced brain injury.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an Experimental Platform for Gamma Knife Radiosurgery in Mouse Brains.\",\"authors\":\"Yueshan Feng, Jiaxing Yu, Lixin Xu, Haohan Lu, Hongyun Zhang, Zhengsong Li, Roberta Kungulli, Tao Hong, Mo Zhang, Jie Lu, Hongqi Zhang, Sishi Xiang\",\"doi\":\"10.1667/RADE-24-00198.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The limited availability of post-Gamma Knife radiosurgery (GKRS) samples and the unsuitability of clinical GKRS devices for small animals highlight the need to develop devices that enable the application of a clinical GKRS device in mouse models. This study introduces a novel platform specifically designed for utilizing the Leksell Gamma Knife in mouse studies. The 3D-printed device comprises a positioning platform and a head fixation device. Six-week-old C57BL/6N mice underwent irradiation targeting the left caudate putamen (CPu) or left anterior frontobase areas. Clinical Gamma Knife prescription doses (central radiation doses of 80 Gy, 60 Gy, 50 Gy, 40 Gy, 20 Gy, and 10 Gy) were administered as single exposures. Dose conversion experiments confirmed that the actual radiation dose delivered to mice was consistently 1.5-fold higher than the planned clinical dose. MRI and H&E staining revealed clear radiation necrosis (RN) in the targeted areas when the planned clinical dose of 80 Gy was applied to the CPu and anterior frontobase, confirming the device's accuracy. γ-H2AX staining showed significant DNA double-strand breaks in the targeted region, particularly after a planned clinical dose of 40 Gy and higher. H&E staining also indicated parenchymal hemorrhage, tissue loss, and edema in the targeted areas among groups exposed to the planned clinical central doses of 80 Gy, 60 Gy, and 50 Gy. Immunofluorescence staining of CD68, IBA1, and NeuN showed significant neuroinflammation in the targeted areas of the high-dose groups (planned clinical doses of 80 Gy, 60 Gy, 50 Gy, or 40 Gy), characterized by increased microglia activation, macrophage infiltration, and neuronal death. This study developed a novel mouse platform for the Leksell Gamma Knife, enabling precise GKRS in mouse brains. For adult C57BL/6N mice, a planned clinical central dose of 40 Gy may be considered a suitable threshold for radiation-induced brain injury.</p>\",\"PeriodicalId\":20903,\"journal\":{\"name\":\"Radiation research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1667/RADE-24-00198.1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00198.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

伽玛刀放射手术(GKRS)后样本的有限可用性以及临床GKRS设备对小动物的不适用性突出了开发能够在小鼠模型中应用临床GKRS设备的设备的必要性。本研究介绍了一种专门为在小鼠研究中使用Leksell伽玛刀而设计的新颖平台。所述3d打印装置包括定位平台和头部固定装置。6周大的C57BL/6N小鼠接受了针对左尾状壳核(CPu)或左前额基底区的照射。临床伽玛刀处方剂量(中心辐射剂量为80 Gy、60 Gy、50 Gy、40 Gy、20 Gy和10 Gy)为单次照射。剂量转换实验证实,给小鼠的实际辐射剂量始终比临床计划剂量高1.5倍。当计划临床剂量为80 Gy时,MRI和H&E染色显示靶区明显放射性坏死(RN),证实了该装置的准确性。γ-H2AX染色显示靶区有明显的DNA双链断裂,特别是在计划的临床剂量为40 Gy及更高后。H&E染色还显示,在计划临床中心剂量为80 Gy、60 Gy和50 Gy的组中,靶区有实质出血、组织损失和水肿。CD68、IBA1和NeuN的免疫荧光染色显示,高剂量组(临床计划剂量为80 Gy、60 Gy、50 Gy或40 Gy)靶区有明显的神经炎症,表现为小胶质细胞活化增加、巨噬细胞浸润和神经元死亡。本研究为Leksell伽玛刀开发了一种新颖的小鼠平台,实现了小鼠大脑中精确的GKRS。对于成年C57BL/6N小鼠,计划的临床中心剂量40 Gy可能被认为是辐射致脑损伤的合适阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of an Experimental Platform for Gamma Knife Radiosurgery in Mouse Brains.

The limited availability of post-Gamma Knife radiosurgery (GKRS) samples and the unsuitability of clinical GKRS devices for small animals highlight the need to develop devices that enable the application of a clinical GKRS device in mouse models. This study introduces a novel platform specifically designed for utilizing the Leksell Gamma Knife in mouse studies. The 3D-printed device comprises a positioning platform and a head fixation device. Six-week-old C57BL/6N mice underwent irradiation targeting the left caudate putamen (CPu) or left anterior frontobase areas. Clinical Gamma Knife prescription doses (central radiation doses of 80 Gy, 60 Gy, 50 Gy, 40 Gy, 20 Gy, and 10 Gy) were administered as single exposures. Dose conversion experiments confirmed that the actual radiation dose delivered to mice was consistently 1.5-fold higher than the planned clinical dose. MRI and H&E staining revealed clear radiation necrosis (RN) in the targeted areas when the planned clinical dose of 80 Gy was applied to the CPu and anterior frontobase, confirming the device's accuracy. γ-H2AX staining showed significant DNA double-strand breaks in the targeted region, particularly after a planned clinical dose of 40 Gy and higher. H&E staining also indicated parenchymal hemorrhage, tissue loss, and edema in the targeted areas among groups exposed to the planned clinical central doses of 80 Gy, 60 Gy, and 50 Gy. Immunofluorescence staining of CD68, IBA1, and NeuN showed significant neuroinflammation in the targeted areas of the high-dose groups (planned clinical doses of 80 Gy, 60 Gy, 50 Gy, or 40 Gy), characterized by increased microglia activation, macrophage infiltration, and neuronal death. This study developed a novel mouse platform for the Leksell Gamma Knife, enabling precise GKRS in mouse brains. For adult C57BL/6N mice, a planned clinical central dose of 40 Gy may be considered a suitable threshold for radiation-induced brain injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiation research
Radiation research 医学-核医学
CiteScore
5.10
自引率
8.80%
发文量
179
审稿时长
1 months
期刊介绍: Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with chemical agents contributing to the understanding of radiation effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信