{"title":"Structural biology inside multicellular specimens using electron cryotomography.","authors":"Ido Caspy, Zhexin Wang, Tanmay A M Bharat","doi":"10.1017/S0033583525000010","DOIUrl":"10.1017/S0033583525000010","url":null,"abstract":"<p><p>The electron cryomicroscopy (cryo-EM) resolution revolution has shifted structural biology into a new era, enabling the routine structure determination of macromolecular complexes at an unprecedented rate. Building on this, electron cryotomography (cryo-ET) offers the potential to visualise the native three-dimensional organisation of biological specimens, from cells to tissues and even entire organisms. Despite this huge potential, the study of tissue-like multicellular specimens via cryo-ET still presents numerous challenges, wherein many steps in the workflow are being developed or in urgent need of improvement. In this review, we outline the latest techniques currently utilised for <i>in situ</i> imaging of multicellular specimens, while clearly enumerating their associated limitations. We consider every step in typical workflows employed by various laboratories, including sample preparation, data collection and image analysis, to highlight recent progress and showcase prominent success stories. By considering the entire structural biology workflow for multicellular specimens, we identify which future exciting developments in hardware and software could enable comprehensive <i>in situ</i> structural biology investigations, bringing forth a new age of discovery in molecular structural and cell biology.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":" ","pages":"e6"},"PeriodicalIF":7.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Piero Andrea Temussi, Stephen R Martin, Annalisa Pastore
{"title":"Life and death of Yfh1: how cool is cold denaturation.","authors":"Piero Andrea Temussi, Stephen R Martin, Annalisa Pastore","doi":"10.1017/S0033583524000180","DOIUrl":"10.1017/S0033583524000180","url":null,"abstract":"<p><p>Yeast frataxin (Yfh1) is a small natural protein from yeast that has the unusual property of undergoing cold denaturation at temperatures above the freezing point of water when under conditions of low ionic strength. This peculiarity, together with remarkable resilience, allows the determination, for the whole protein as well as for individual residues, of the stability curve, that is the temperature dependence of the free energy difference between the unfolded and folded forms. The ease of measuring stability curves without the need to add denaturants or introduce <i>ad hoc</i> destabilizing mutations makes this protein an ideal 'tool' for investigating the influence of many environmental factors on protein stability. The present review aims at recapitulating all the open questions that Yfh1 has helped to address, including understanding the differences and commonalities of the cold, heat and pressure unfolded states. This protein thus offers a unique tool for studying aspects of protein stability so far been considered difficult to assess and provides important guidelines that could allow the identification of other similar systems.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"58 ","pages":"e2"},"PeriodicalIF":7.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single-molecule orientation-localization microscopy: Applications and approaches.","authors":"Oumeng Zhang, Matthew D Lew","doi":"10.1017/S0033583524000167","DOIUrl":"10.1017/S0033583524000167","url":null,"abstract":"<p><p>Single-molecule orientation-localization microscopy (SMOLM) builds upon super-resolved localization microscopy by imaging orientations and rotational dynamics of individual molecules in addition to their positions. This added dimensionality provides unparalleled insights into nanoscale biophysical and biochemical processes, including the organization of actin networks, movement of molecular motors, conformations of DNA strands, growth and remodeling of amyloid aggregates, and composition changes within lipid membranes. In this review, we discuss recent innovations in SMOLM and cover three key aspects: (1) biophysical insights enabled by labeling strategies that endow fluorescent probes to bind to targets with orientation specificity; (2) advanced imaging techniques that leverage the physics of light-matter interactions and estimation theory to encode orientation information with high fidelity into microscope images; and (3) computational methods that ensure accurate and precise data analysis and interpretation, even in the presence of severe shot noise. Additionally, we compare labeling approaches, imaging hardware, and publicly available analysis software to aid the community in choosing the best SMOLM implementation for their specific biophysical application. Finally, we highlight future directions for SMOLM, such as the development of probes with improved photostability and specificity, the design of “smart” adaptive hardware, and the use of advanced computational approaches to handle large, complex datasets. This review underscores the significant current and potential impact of SMOLM in deepening our understanding of molecular dynamics, paving the way for future breakthroughs in the fields of biophysics, biochemistry, and materials science.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"57 ","pages":"e17"},"PeriodicalIF":7.2,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142877763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mark A B Kreutzberger, Ravi R Sonani, Edward H Egelman
{"title":"Cryo-EM reconstruction of helical polymers: Beyond the simple cases.","authors":"Mark A B Kreutzberger, Ravi R Sonani, Edward H Egelman","doi":"10.1017/S0033583524000155","DOIUrl":"10.1017/S0033583524000155","url":null,"abstract":"<p><p>Helices are one of the most frequently encountered symmetries in biological assemblies. Helical symmetry has been exploited in electron microscopic studies as a limited number of filament images, in principle, can provide all the information needed to do a three-dimensional reconstruction of a polymer. Over the past 25 years, three-dimensional reconstructions of helical polymers from cryo-EM images have shifted completely from Fourier-Bessel methods to single-particle approaches. The single-particle approaches have allowed people to surmount the problem that very few biological polymers are crystalline in order, and despite the flexibility and heterogeneity present in most of these polymers, reaching a resolution where accurate atomic models can be built has now become the standard. While determining the correct helical symmetry may be very simple for something like F-actin, for many other polymers, particularly those formed from small peptides, it can be much more challenging. This review discusses why symmetry determination can be problematic, and why trial-and-error methods are still the best approach. Studies of many macromolecular assemblies, such as icosahedral capsids, have usually found that not imposing symmetry leads to a great reduction in resolution while at the same time revealing possibly interesting asymmetric features. We show that for certain helical assemblies asymmetric reconstructions can sometimes lead to greatly improved resolution. Further, in the case of supercoiled flagellar filaments from bacteria and archaea, we show that the imposition of helical symmetry can not only be wrong, but is not necessary, and obscures the mechanisms whereby these filaments supercoil.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"57 ","pages":"e16"},"PeriodicalIF":7.2,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Graph theory approaches for molecular dynamics simulations.","authors":"Amun C Patel, Souvik Sinha, Giulia Palermo","doi":"10.1017/S0033583524000143","DOIUrl":"10.1017/S0033583524000143","url":null,"abstract":"<p><p>Graph theory, a branch of mathematics that focuses on the study of graphs (networks of nodes and edges), provides a robust framework for analysing the structural and functional properties of biomolecules. By leveraging molecular dynamics (MD) simulations, atoms or groups of atoms can be represented as nodes, while their dynamic interactions are depicted as edges. This network-based approach facilitates the characterization of properties such as connectivity, centrality, and modularity, which are essential for understanding the behaviour of molecular systems. This review details the application and development of graph theory-based models in studying biomolecular systems. We introduce key concepts in graph theory and demonstrate their practical applications, illustrating how innovative graph theory approaches can be employed to design biomolecular systems with enhanced functionality. Specifically, we explore the integration of graph theoretical methods with MD simulations to gain deeper insights into complex biological phenomena, such as allosteric regulation, conformational dynamics, and catalytic functions. Ultimately, graph theory has proven to be a powerful tool in the field of molecular dynamics, offering valuable insights into the structural properties, dynamics, and interactions of molecular systems. This review establishes a foundation for using graph theory in molecular design and engineering, highlighting its potential to transform the field and drive advancements in the understanding and manipulation of biomolecular systems.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"57 ","pages":"e15"},"PeriodicalIF":7.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142802145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Atomic molecular dynamics simulation advances of <i>de novo</i>-designed proteins.","authors":"Moye Wang, Anqi Ma, Hongjiang Wang, Xiaotong Lou","doi":"10.1017/S0033583524000131","DOIUrl":"10.1017/S0033583524000131","url":null,"abstract":"<p><p>Proteins are vital biological macromolecules that execute biological functions and form the core of synthetic biological systems. The history of <i>de novo</i> protein has evolved from initial successes in subordinate structural design to more intricate protein creation, challenging the complexities of natural proteins. Recent strides in protein design have leveraged computational methods to craft proteins for functions beyond their natural capabilities. Molecular dynamics (MD) simulations have emerged as a crucial tool for comprehending the structural and dynamic properties of <i>de novo</i>-designed proteins. In this study, we examined the pivotal role of MD simulations in elucidating the sampling methods, force field, water models, stability, and dynamics of <i>de novo-</i>designed proteins, highlighting their potential applications in diverse fields. The synergy between computational modeling and experimental validation continued to play a crucial role in the creation of novel proteins tailored for specific functions and applications.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"57 ","pages":"e14"},"PeriodicalIF":7.2,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142787031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review of contemporary fluorescence correlation spectroscopy method in diverse solution studies.","authors":"Snežana M Jovičić","doi":"10.1017/S003358352400012X","DOIUrl":"https://doi.org/10.1017/S003358352400012X","url":null,"abstract":"<p><p>Fluorescence correlation spectroscopy (FCS) is a well-known and established non-invasive method for quantification of physical parameters that preside over molecular mechanisms and dynamics. It combines maximum sensitivity and statistical confidence for the analysis of speed, size, and number of fluorescent molecules and interactions with surrounding molecules by time-averaging fluctuation analysis in a well-defined volume element. The narrow compass of this study is to acquaint the basic principle of diffusion and the FCS method in general regarding variable magnitudes and standardization adjustment. In this review, we give a theoretical introduction, examples of experimental applications, and utensils in solution systems with future perspectives.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"57 ","pages":"e13"},"PeriodicalIF":7.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optical scattering methods for the label-free analysis of single biomolecules.","authors":"Reuven Gordon, Matthew Peters, Cuifeng Ying","doi":"10.1017/S0033583524000088","DOIUrl":"https://doi.org/10.1017/S0033583524000088","url":null,"abstract":"<p><p>Single-molecule techniques to analyze proteins and other biomolecules involving labels and tethers have allowed for new understanding of the underlying biophysics; however, the impact of perturbation from the labels and tethers has recently been shown to be significant in several cases. New approaches are emerging to measure single proteins through light scattering without the need for labels and ideally without tethers. Here, the approaches of interference scattering, plasmonic scattering, microcavity sensing, nanoaperture optical tweezing, and variants are described and compared. The application of these approaches to sizing, oligomerization, interactions, conformational dynamics, diffusion, and vibrational mode analysis is described. With early commercial successes, these approaches are poised to have an impact in the field of single-molecule biophysics.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"57 ","pages":"e12"},"PeriodicalIF":7.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The development and applications of multidimensional biomolecular spectroscopy illustrated by photosynthetic light harvesting.","authors":"Graham R Fleming, Gregory D Scholes","doi":"10.1017/S003358352400009X","DOIUrl":"https://doi.org/10.1017/S003358352400009X","url":null,"abstract":"<p><p>The parallel and synergistic developments of atomic resolution structural information, new spectroscopic methods, their underpinning formalism, and the application of sophisticated theoretical methods have led to a step function change in our understanding of photosynthetic light harvesting, the process by which photosynthetic organisms collect solar energy and supply it to their reaction centers to initiate the chemistry of photosynthesis. The new spectroscopic methods, in particular multidimensional spectroscopies, have enabled a transition from recording rates of processes to focusing on mechanism. We discuss two ultrafast spectroscopies - two-dimensional electronic spectroscopy and two-dimensional electronic-vibrational spectroscopy - and illustrate their development through the lens of photosynthetic light harvesting. Both spectroscopies provide enhanced spectral resolution and, in different ways, reveal pathways of energy flow and coherent oscillations which relate to the quantum mechanical mixing of, for example, electronic excitations (excitons) and nuclear motions. The new types of information present in these spectra provoked the application of sophisticated quantum dynamical theories to describe the temporal evolution of the spectra and provide new questions for experimental investigation. While multidimensional spectroscopies have applications in many other areas of science, we feel that the investigation of photosynthetic light harvesting has had the largest influence on the development of spectroscopic and theoretical methods for the study of quantum dynamics in biology, hence the focus of this review. We conclude with key questions for the next decade of this review.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"57 ","pages":"e11"},"PeriodicalIF":7.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protonation constants of endo- and exogenous L-amino acids and their derivatives in aqueous and mixed solution: Unraveling molecular secrets.","authors":"Marek Pająk, Jakub Fichna, Magdalena Woźniczka","doi":"10.1017/S0033583524000118","DOIUrl":"https://doi.org/10.1017/S0033583524000118","url":null,"abstract":"<p><p>The aim of this review is to summarize the progress made in the determination of the protonation constants of biologically active ligands: endo- and exogenous L-amino acids and their derivatives in aqueous and mixed solutions using different experimental techniques. The knowledge of the protonation constants of the aforementioned ligands is crucial for the determination of the equilibrium constants of complex formation and thus for the understanding of complex biological reactions such as transamination, racemization, and decarboxylation. Thus, the protonation constants of ligands are a measure of their ability to form complexes with metal ions. This knowledge not only helps to understand fundamental biochemical processes, but also has practical applications in areas such as drug design, where ligands are often targeted for therapeutic purposes. The activity of the ligands tends to increase after complexation and their order is consistent with the values of the stepwise dissociation constants of the complexes formed. Understanding the properties of ligands by determining their protonation constants in different environments and their interactions with surrounding molecules is crucial to unraveling the complexity of biological systems.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"57 ","pages":"e10"},"PeriodicalIF":7.2,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}