Structural biology inside multicellular specimens using electron cryotomography.

IF 7.2 2区 生物学 Q1 BIOPHYSICS
Ido Caspy, Zhexin Wang, Tanmay A M Bharat
{"title":"Structural biology inside multicellular specimens using electron cryotomography.","authors":"Ido Caspy, Zhexin Wang, Tanmay A M Bharat","doi":"10.1017/S0033583525000010","DOIUrl":null,"url":null,"abstract":"<p><p>The electron cryomicroscopy (cryo-EM) resolution revolution has shifted structural biology into a new era, enabling the routine structure determination of macromolecular complexes at an unprecedented rate. Building on this, electron cryotomography (cryo-ET) offers the potential to visualise the native three-dimensional organisation of biological specimens, from cells to tissues and even entire organisms. Despite this huge potential, the study of tissue-like multicellular specimens via cryo-ET still presents numerous challenges, wherein many steps in the workflow are being developed or in urgent need of improvement. In this review, we outline the latest techniques currently utilised for <i>in situ</i> imaging of multicellular specimens, while clearly enumerating their associated limitations. We consider every step in typical workflows employed by various laboratories, including sample preparation, data collection and image analysis, to highlight recent progress and showcase prominent success stories. By considering the entire structural biology workflow for multicellular specimens, we identify which future exciting developments in hardware and software could enable comprehensive <i>in situ</i> structural biology investigations, bringing forth a new age of discovery in molecular structural and cell biology.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":" ","pages":"e6"},"PeriodicalIF":7.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617309/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Reviews of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0033583525000010","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The electron cryomicroscopy (cryo-EM) resolution revolution has shifted structural biology into a new era, enabling the routine structure determination of macromolecular complexes at an unprecedented rate. Building on this, electron cryotomography (cryo-ET) offers the potential to visualise the native three-dimensional organisation of biological specimens, from cells to tissues and even entire organisms. Despite this huge potential, the study of tissue-like multicellular specimens via cryo-ET still presents numerous challenges, wherein many steps in the workflow are being developed or in urgent need of improvement. In this review, we outline the latest techniques currently utilised for in situ imaging of multicellular specimens, while clearly enumerating their associated limitations. We consider every step in typical workflows employed by various laboratories, including sample preparation, data collection and image analysis, to highlight recent progress and showcase prominent success stories. By considering the entire structural biology workflow for multicellular specimens, we identify which future exciting developments in hardware and software could enable comprehensive in situ structural biology investigations, bringing forth a new age of discovery in molecular structural and cell biology.

利用电子冷冻成像技术进行多细胞标本内部结构生物学研究。
电子低温显微镜(cryo-EM)的分辨率革命将结构生物学带入了一个新时代,使大分子复合物的常规结构测定能够以前所未有的速度进行。在此基础上,电子冷冻断层扫描(cryo-ET)提供了可视化生物标本的原生三维组织的潜力,从细胞到组织甚至整个生物体。尽管具有巨大的潜力,但通过冷冻et研究组织样多细胞标本仍然面临许多挑战,其中工作流程中的许多步骤正在开发或迫切需要改进。在这篇综述中,我们概述了目前用于多细胞标本原位成像的最新技术,同时清楚地列举了它们的相关局限性。我们考虑了各个实验室采用的典型工作流程的每一步,包括样品制备,数据收集和图像分析,以突出最近的进展并展示突出的成功案例。通过考虑多细胞标本的整个结构生物学工作流程,我们确定了硬件和软件的未来令人兴奋的发展,可以实现全面的原位结构生物学研究,带来分子结构和细胞生物学的新发现时代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quarterly Reviews of Biophysics
Quarterly Reviews of Biophysics 生物-生物物理
CiteScore
12.90
自引率
1.60%
发文量
16
期刊介绍: Quarterly Reviews of Biophysics covers the field of experimental and computational biophysics. Experimental biophysics span across different physics-based measurements such as optical microscopy, super-resolution imaging, electron microscopy, X-ray and neutron diffraction, spectroscopy, calorimetry, thermodynamics and their integrated uses. Computational biophysics includes theory, simulations, bioinformatics and system analysis. These biophysical methodologies are used to discover the structure, function and physiology of biological systems in varying complexities from cells, organelles, membranes, protein-nucleic acid complexes, molecular machines to molecules. The majority of reviews published are invited from authors who have made significant contributions to the field, who give critical, readable and sometimes controversial accounts of recent progress and problems in their specialty. The journal has long-standing, worldwide reputation, demonstrated by its high ranking in the ISI Science Citation Index, as a forum for general and specialized communication between biophysicists working in different areas. Thematic issues are occasionally published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信