Reyhaneh Shakibi, Fatemeh Yazdipour, Hamed Abadijoo, Navid Manoochehri, Farshid Rostami Pouria, Taraneh Bajooli, Hossein Simaee, Parviz Abdolmaleki, Ali Khatibi, Mohammad Abdolahad, Ali Akbar Moosavi-Movahhedi, Mohammad Ali Khayamian
{"title":"From resting potential to dynamics: advances in membrane voltage indicators and imaging techniques - ERRATUM.","authors":"Reyhaneh Shakibi, Fatemeh Yazdipour, Hamed Abadijoo, Navid Manoochehri, Farshid Rostami Pouria, Taraneh Bajooli, Hossein Simaee, Parviz Abdolmaleki, Ali Khatibi, Mohammad Abdolahad, Ali Akbar Moosavi-Movahhedi, Mohammad Ali Khayamian","doi":"10.1017/S0033583525000058","DOIUrl":"https://doi.org/10.1017/S0033583525000058","url":null,"abstract":"","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"58 ","pages":"e11"},"PeriodicalIF":7.2,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143754308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computational methods for binding site prediction on macromolecules.","authors":"Igor Kozlovskii, Petr Popov","doi":"10.1017/S003358352500006X","DOIUrl":"https://doi.org/10.1017/S003358352500006X","url":null,"abstract":"","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":" ","pages":"1-84"},"PeriodicalIF":7.2,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143606037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protein Data Bank (PDB): Fifty-three years young and having a transformative impact on science and society.","authors":"Helen M Berman, Stephen K Burley","doi":"10.1017/S0033583525000034","DOIUrl":"10.1017/S0033583525000034","url":null,"abstract":"<p><p>This review article describes the co-evolution of structural biology as a discipline and the Protein Data Bank (PDB), established in 1971 as the first open-access data resource in biology by like-minded structural scientists. As the PDB archive grew in size and scope to encompass macromolecular crystallography, NMR spectroscopy, and cryo-electron microscopy, new technologies were developed to ingest, validate, curate, store, and distribute the information. Community engagement ensured that the needs of structural biologists (data depositors) and data consumers were met. Today, the archive houses more than 230,000 experimentally determined structures of proteins, nucleic acids, and macromolecular machines and their complexes with one another and small-molecule ligands. Aggregate costs of PDB data preservation are ~1% of the cost of structure determination. The enormous impact of PDB data on basic and applied research and education across the natural and medical sciences is presented and highlighted with illustrative examples. Enablement of <i>de novo</i> protein structure prediction (AlphaFold2, RoseTTAfold, OpenFold, <i>etc.</i>) is the most widely appreciated benefit of having a corpus of rigorously validated, expertly curated 3D biostructure data.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":" ","pages":"e9"},"PeriodicalIF":7.2,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143459312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machinery, mechanism, and information in post-transcription control of gene expression, from the perspective of unstable RNA.","authors":"Giulia Paris, Kai Katsuya-Gaviria, Ben F Luisi","doi":"10.1017/S0033583525000022","DOIUrl":"10.1017/S0033583525000022","url":null,"abstract":"<p><p>Throughout all the domains of life, and even among the co-existing viruses, RNA molecules play key roles in regulating the rates, duration, and intensity of the expression of genetic information. RNA acts at many different levels in playing these roles. <i>Trans-</i>acting regulatory RNAs can modulate the lifetime and translational efficiency of transcripts with which they pair to achieve speedy and highly specific recognition using only a few components. <i>Cis</i>-acting recognition elements, covalent modifications, and changes to the termini of RNA molecules encode signals that impact transcript lifetime, translation efficiency, and other functional aspects. RNA can provide an allosteric function to signal state changes through the binding of small ligands or interactions with other macromolecules. In either <i>cis</i> or <i>trans</i>, RNA can act in conjunction with multi-enzyme assemblies that function in RNA turnover, processing and surveillance for faulty transcripts. These enzymatic machineries have likely evolved independently in diverse life forms but nonetheless share analogous functional roles, implicating the biological importance of cooperative assemblies to meet the exact demands of RNA metabolism. Underpinning all the RNA-mediated processes are two key aspects: specificity, which avoids misrecognition, and speedy action, which confers timely responses to signals. How these processes work and how aberrant RNA species are recognised and responded to by the degradative machines are intriguing puzzles. We review the biophysical basis for these processes. Kinetics of assembly and multivalency of interacting components provide windows of opportunity for recognition and action that are required for the key regulatory events. The thermodynamic irreversibility of RNA-mediated regulation is one emergent feature of biological systems that may help to account for the apparent specificity and optimal rates.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":" ","pages":"e10"},"PeriodicalIF":7.2,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamics and kinetics in structural biology: the example of DNA photolyase.","authors":"Keith Moffat","doi":"10.1017/S0033583524000222","DOIUrl":"10.1017/S0033583524000222","url":null,"abstract":"<p><p>All biochemical reactions directly involve structural changes that may occur over a very wide range of timescales from femtoseconds to seconds. Understanding the mechanism of action thus requires determination of both the static structures of the macromolecule involved and short-lived intermediates between reactant and product. This requires either freeze-trapping of intermediates, for example by cryo-electron microscopy, or direct determination of structures in active systems at near-physiological temperature by time-resolved X-ray crystallography. Storage ring X-ray sources effectively cover the time range down to around 100 ps that reveal tertiary and quaternary structural changes in proteins. The briefer pulses emitted by hard X-ray free electron laser sources extend that range to femtoseconds, which covers critical chemical reactions such as electron transfer, isomerization, breaking of covalent bonds, and ultrafast structural changes in light-sensitive protein chromophores and their protein environment. These reactions are exemplified by the time-resolved X-ray studies by two groups of the FAD-based DNA repair enzyme, DNA photolyase, over the time range from 1 ps to 100 μs.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":" ","pages":"e8"},"PeriodicalIF":7.2,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Allostery.","authors":"Mateu Montserrat-Canals, Gabriele Cordara, Ute Krengel","doi":"10.1017/S0033583524000209","DOIUrl":"10.1017/S0033583524000209","url":null,"abstract":"<p><p><i>Allostery</i> describes the ability of biological macromolecules to transmit signals spatially through the molecule from an <i>allosteric</i> site – a site that is distinct from <i>orthosteric</i> binding sites of primary, endogenous ligands – to the functional or active site. This review starts with a historical overview and a description of the classical example of allostery – hemoglobin – and other well-known examples (aspartate transcarbamoylase, Lac repressor, kinases, G-protein-coupled receptors, adenosine triphosphate synthase, and chaperonin). We then discuss fringe examples of allostery, including intrinsically disordered proteins and inter-enzyme allostery, and the influence of dynamics, entropy, and conformational ensembles and landscapes on allosteric mechanisms, to capture the essence of the field. Thereafter, we give an overview over central methods for investigating molecular mechanisms, covering experimental techniques as well as simulations and artificial intelligence (AI)-based methods. We conclude with a review of allostery-based drug discovery, with its challenges and opportunities: with the recent advent of AI-based methods, allosteric compounds are set to revolutionize drug discovery and medical treatments.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"58 ","pages":"e5"},"PeriodicalIF":7.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"S-layers: from a serendipitous discovery to a toolkit for nanobiotechnology.","authors":"Uwe B Sleytr, Dietmar Pum","doi":"10.1017/S0033583524000106","DOIUrl":"10.1017/S0033583524000106","url":null,"abstract":"<p><p>Prokaryotic microorganisms, comprising <i>Bacteria</i> and <i>Archaea</i>, exhibit a fascinating diversity of cell envelope structures reflecting their adaptations that contribute to their resilience and survival in diverse environments. Among these adaptations, surface layers (S-layers) composed of monomolecular protein or glycoprotein lattices are one of the most observed envelope components. They are the most abundant cellular proteins and represent the simplest biological membranes that have developed during evolution. S-layers provide organisms with a great variety of selective advantages, including acting as an antifouling layer, protective coating, molecular sieve, ion trap, structure involved in cell and molecular adhesion, surface recognition and virulence factor for pathogens. In <i>Archaea</i> that possess S-layers as the exclusive cell wall component, the (glyco)protein lattices function as a cell shape-determining/maintaining scaffold. The wealth of information available on the structure, chemistry, genetics and <i>in vivo</i> and <i>in vitro</i> morphogenesis has revealed a broad application potential for S-layers as patterning elements in a molecular construction kit for bio- and nanotechnology, synthetic biology, biomimetics, biomedicine and diagnostics. In this review, we try to describe the scientifically exciting early days of S-layer research with a special focus on the 'Vienna-S-Layer-Group'. Our presentation is intended to illustrate how our curiosity and joy of discovery motivated us to explore this new structure and to make the scientific community aware of its relevance in the realm of prokaryotes, and moreover, how we developed concepts for exploiting this unique self-assembly structure. We hope that our presentation, with its many personal notes, is also of interest from the perspective of the history of S-layer research.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"58 ","pages":"e4"},"PeriodicalIF":7.2,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reyhaneh Shakibi, Fatemeh Yazdipour, Hamed Abadijoo, Navid Manoochehri, Farshid Rostami Pouria, Taraneh Bajooli, Hossein Simaee, Parviz Abdolmaleki, Ali Khatibi, Mohammad Abdolahad, Ali Akbar Moosavi-Movahhedi, Mohammad Ali Khayamian
{"title":"From resting potential to dynamics: advances in membrane voltage indicators and imaging techniques.","authors":"Reyhaneh Shakibi, Fatemeh Yazdipour, Hamed Abadijoo, Navid Manoochehri, Farshid Rostami Pouria, Taraneh Bajooli, Hossein Simaee, Parviz Abdolmaleki, Ali Khatibi, Mohammad Abdolahad, Ali Akbar Moosavi-Movahhedi, Mohammad Ali Khayamian","doi":"10.1017/S0033583524000210","DOIUrl":"10.1017/S0033583524000210","url":null,"abstract":"<p><p>The membrane potential is a critical aspect of cellular physiology, essential for maintaining homeostasis, facilitating signal transduction, and driving various cellular processes. While the resting membrane potential (RMP) represents a key physiological parameter, membrane potential fluctuations, such as depolarization and hyperpolarization, are equally vital in understanding dynamic cellular behavior. Traditional techniques, such as microelectrodes and patch-clamp methods, offer valuable insights but are invasive and less suited for high-throughput applications. Recent advances in voltage indicators, including fast and slow dyes, and novel imaging modalities such as second harmonic generation (SHG) and photoacoustic imaging, enable noninvasive, high-resolution measurement of both RMP and membrane potential dynamics. This review explores the mechanisms, development, and applications of these tools, emphasizing their transformative potential in neuroscience and cellular electrophysiology research.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":" ","pages":"e7"},"PeriodicalIF":7.2,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michał A Michałowski, Karol Kłopotowski, Grzegorz Wiera, Marta M Czyżewska, Jerzy W Mozrzymas
{"title":"Molecular mechanisms of the GABA type A receptor function.","authors":"Michał A Michałowski, Karol Kłopotowski, Grzegorz Wiera, Marta M Czyżewska, Jerzy W Mozrzymas","doi":"10.1017/S0033583524000179","DOIUrl":"10.1017/S0033583524000179","url":null,"abstract":"<p><p>The GABA type A receptor (GABA<sub>A</sub>R) belongs to the family of pentameric ligand-gated ion channels and plays a key role in inhibition in adult mammalian brains. Dysfunction of this macromolecule may lead to epilepsy, anxiety disorders, autism, depression, and schizophrenia. GABA<sub>A</sub>R is also a target for multiple physiologically and clinically relevant modulators, such as benzodiazepines (BDZs), general anesthetics, and neurosteroids. The first GABA<sub>A</sub>R structure appeared in 2014, but the past years have brought a particularly abundant surge in structural data for these receptors with various ligands and modulators. Although the open conformation remains elusive, this novel information has pushed the structure-function studies to an unprecedented level. Electrophysiology, mutagenesis, photolabeling, and in silico simulations, guided by novel structural information, shed new light on the molecular mechanisms of receptor functioning. The main goal of this review is to present the current knowledge of GABA<sub>A</sub>R functional and structural properties. The review begins with an outline of the functional and structural studies of GABA<sub>A</sub>R, accompanied by some methodological considerations, especially biophysical methods, enabling the reader to follow how major breakthroughs in characterizing GABA<sub>A</sub>R features have been achieved. The main section provides a comprehensive analysis of the functional significance of specific structural elements in GABA<sub>A</sub>Rs. We additionally summarize the current knowledge on the binding sites for major GABA<sub>A</sub>R modulators, referring to the molecular underpinnings of their action. The final chapter of the review moves beyond examining GABA<sub>A</sub>R as an isolated macromolecule and describes the interactions of the receptor with other proteins in a broader context of inhibitory plasticity. In the final section, we propose a general conclusion that agonist binding to the orthosteric binding sites appears to rely on local interactions, whereas conformational transitions of bound macromolecule (gating) and allosteric modulation seem to reflect more global phenomena involving vast portions of the macromolecule.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"58 ","pages":"e3"},"PeriodicalIF":7.2,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Viroporins: discovery, methods of study, and mechanisms of host-membrane permeabilization.","authors":"Antonio Alcaraz, José L Nieva","doi":"10.1017/S0033583524000192","DOIUrl":"10.1017/S0033583524000192","url":null,"abstract":"<p><p>The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites. Through mechanisms not fully understood, expression of viroporins facilitates virion assembly/release from infected cells, and subverts the cell physiology, contributing to cytopathogenicity. Compounds that interact with viroporins and interfere with their membrane-permeabilizing activity <i>in vitro</i>, are known to inhibit virus production. Moreover, viroporin-defective viruses comprise a source of live attenuated vaccines that prevent infection by notorious human and livestock pathogens. This review dives into the origin and evolution of the viroporin concept, summarizes some of the methodologies used to characterize the structure-function relationships of these important virulence factors, and attempts to classify them on biophysical grounds attending to their mechanisms of ion/solute transport across membranes.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"58 ","pages":"e1"},"PeriodicalIF":7.2,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}