{"title":"Using multiscale molecular dynamics simulations to explore the fusion machinery underlying neurotransmitter release.","authors":"Dong An, Satyan Sharma, Manfred Lindau","doi":"10.1017/S0033583525100048","DOIUrl":null,"url":null,"abstract":"<p><p>Neurotransmitter release via synaptic vesicle fusion with the plasma membrane is driven by SNARE proteins (Synaptobrevin, Syntaxin, and SNAP-25) and accessory proteins (Synaptotagmin, Complexin, Munc13, and Munc18). While extensively studied experimentally, the precise mechanisms and dynamics remain elusive due to spatiotemporal limitations. Molecular dynamics (MD) simulations-both all-atom (AA) and coarse-grained (CG)-bridge these gaps by capturing fusion dynamics beyond experimental resolution. This review explores the use of these simulations in understanding SNARE-mediated membrane fusion and its regulation by Synaptotagmin and Complexin. We first examine two competing hypotheses regarding the driving force of fusion: (1) SNARE zippering transducing energy through rigid juxtamembrane domains (JMDs) and (2) SNAREs generating entropic forces via flexible JMDs. Despite different origins of forces, the conserved fusion pathway - from membrane adhesion to stalk and fusion pore (FP) formation - emerges across models. We also highlight the critical role of SNARE transmembrane domains (TMDs) and their regulation by post-translational modifications like palmitoylation in fast fusion. Further, we review Ca²⁺-dependent interactions of Synaptotagmin's C2 domains with lipids and SNAREs at the primary and tripartite interfaces, and how these interactions regulate fusion timing. Complexin's role in clamping spontaneous fusion while facilitating evoked release via its central and accessory helices is also discussed. We present a case study leveraging AA and CG simulations to investigate ion selectivity in FPs, balancing timescale and accuracy. We conclude with the limitations in current simulations and using AI tools to construct complete fusion machinery and explore isoform-specific functions in fusion machinery.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":" ","pages":"e14"},"PeriodicalIF":7.2000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Reviews of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0033583525100048","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Neurotransmitter release via synaptic vesicle fusion with the plasma membrane is driven by SNARE proteins (Synaptobrevin, Syntaxin, and SNAP-25) and accessory proteins (Synaptotagmin, Complexin, Munc13, and Munc18). While extensively studied experimentally, the precise mechanisms and dynamics remain elusive due to spatiotemporal limitations. Molecular dynamics (MD) simulations-both all-atom (AA) and coarse-grained (CG)-bridge these gaps by capturing fusion dynamics beyond experimental resolution. This review explores the use of these simulations in understanding SNARE-mediated membrane fusion and its regulation by Synaptotagmin and Complexin. We first examine two competing hypotheses regarding the driving force of fusion: (1) SNARE zippering transducing energy through rigid juxtamembrane domains (JMDs) and (2) SNAREs generating entropic forces via flexible JMDs. Despite different origins of forces, the conserved fusion pathway - from membrane adhesion to stalk and fusion pore (FP) formation - emerges across models. We also highlight the critical role of SNARE transmembrane domains (TMDs) and their regulation by post-translational modifications like palmitoylation in fast fusion. Further, we review Ca²⁺-dependent interactions of Synaptotagmin's C2 domains with lipids and SNAREs at the primary and tripartite interfaces, and how these interactions regulate fusion timing. Complexin's role in clamping spontaneous fusion while facilitating evoked release via its central and accessory helices is also discussed. We present a case study leveraging AA and CG simulations to investigate ion selectivity in FPs, balancing timescale and accuracy. We conclude with the limitations in current simulations and using AI tools to construct complete fusion machinery and explore isoform-specific functions in fusion machinery.
期刊介绍:
Quarterly Reviews of Biophysics covers the field of experimental and computational biophysics. Experimental biophysics span across different physics-based measurements such as optical microscopy, super-resolution imaging, electron microscopy, X-ray and neutron diffraction, spectroscopy, calorimetry, thermodynamics and their integrated uses. Computational biophysics includes theory, simulations, bioinformatics and system analysis. These biophysical methodologies are used to discover the structure, function and physiology of biological systems in varying complexities from cells, organelles, membranes, protein-nucleic acid complexes, molecular machines to molecules. The majority of reviews published are invited from authors who have made significant contributions to the field, who give critical, readable and sometimes controversial accounts of recent progress and problems in their specialty. The journal has long-standing, worldwide reputation, demonstrated by its high ranking in the ISI Science Citation Index, as a forum for general and specialized communication between biophysicists working in different areas. Thematic issues are occasionally published.