Protein & CellPub Date : 2024-02-29DOI: 10.1093/procel/pwad048
Li Chen, Liping Zhang, Xujun Ye, Zixin Deng, Changming Zhao
{"title":"Ergothioneine and its congeners: anti-ageing mechanisms and pharmacophore biosynthesis.","authors":"Li Chen, Liping Zhang, Xujun Ye, Zixin Deng, Changming Zhao","doi":"10.1093/procel/pwad048","DOIUrl":"10.1093/procel/pwad048","url":null,"abstract":"<p><p>Ergothioneine, Ovothiol, and Selenoneine are sulfur/selenium-containing histidine-derived natural products widely distributed across different organisms. They exhibit significant antioxidant properties, making them as potential lead compounds for promoting health. Increasing evidence suggests that Ergothioneine is positively correlated with healthy ageing and longevity. The mechanisms underlying Ergothioneine's regulation of the ageing process at cellular and molecular levels are beginning to be understood. In this review, we provide an in-depth and extensive coverage of the anti-ageing studies on Ergothioneine and discuss its possible intracellular targeting pathways. In addition, we highlight the recent efforts in elucidating the biosynthetic details for Ergothioneine, Ovothiol, and Selenoneine, with a particular focus on the study of their pharmacophore-forming enzymology.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"191-206"},"PeriodicalIF":21.1,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903977/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10320971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protein & CellPub Date : 2024-02-23DOI: 10.1093/procel/pwae002
{"title":"Correction to: EGFR signaling augments TLR4 cell surface expression and function in macrophages via regulation of Rab5a activation.","authors":"","doi":"10.1093/procel/pwae002","DOIUrl":"https://doi.org/10.1093/procel/pwae002","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":21.1,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139940702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anthrax lethal toxin and tumor necrosis factor-α synergize on intestinal epithelia to induce mouse death.","authors":"Xinhe Gao, Teng Teng, Yifei Liu, Tingting Ai, Rui Zhao, Yilong Fu, Peipei Zhang, Jiahuai Han, Yingying Zhang","doi":"10.1093/procel/pwad050","DOIUrl":"10.1093/procel/pwad050","url":null,"abstract":"<p><p>Bacillus anthracis lethal toxin (LT) is a determinant of lethal anthrax. Its function in myeloid cells is required for bacterial dissemination, and LT itself can directly trigger dysfunction of the cardiovascular system. The interplay between LT and the host responses is important in the pathogenesis, but our knowledge on this interplay remains limited. Tumor necrosis factor-α (TNF-α) is a pleiotropic pro-inflammatory cytokine induced by bacterial infections. Since LT accumulates and cytokines, predominantly TNF, amass during B. anthracis infection, co-treatment of TNF + LT in mice was used to mimic in vivo conditions for LT to function in inflamed hosts. Bone marrow transplantation and genetically engineered mice showed unexpectedly that the death of intestinal epithelial cells (IECs) rather than that of hematopoietic cells led to LT + TNF-induced lethality. Inhibition of p38α mitogen-activated protein kinase (MAPK) signaling by LT in IECs promoted TNF-induced apoptosis and necroptosis of IECs, leading to intestinal damage and mouse death. Consistently, p38α inhibition by LT enhanced TNF-mediated cell death in human colon epithelial HT-29 cells. As intestinal damage is one of the leading causes of lethality in anthrax patients, the IEC damage caused by LT + TNF would most likely be a mechanism underneath this clinical manifestation and could be a target for interventions.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"135-148"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833652/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49681598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protein & CellPub Date : 2024-02-01DOI: 10.1093/procel/pwad042
Ping Liu, Junjie Hu, Lei Wang
{"title":"SARS-CoV-2 ORF8 does not function in the nucleus as a histone mimic.","authors":"Ping Liu, Junjie Hu, Lei Wang","doi":"10.1093/procel/pwad042","DOIUrl":"10.1093/procel/pwad042","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"79-82"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9779082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two antibodies show broad, synergistic neutralization against SARS-CoV-2 variants by inducing conformational change within the RBD.","authors":"Hui Sun, Tingting Deng, Yali Zhang, Yanling Lin, Yanan Jiang, Yichao Jiang, Yang Huang, Shuo Song, Lingyan Cui, Tingting Li, Hualong Xiong, Miaolin Lan, Liqin Liu, Yu Li, Qianjiao Fang, Kunyu Yu, Wenling Jiang, Lizhi Zhou, Yuqiong Que, Tianying Zhang, Quan Yuan, Tong Cheng, Zheng Zhang, Hai Yu, Jun Zhang, Wenxin Luo, Shaowei Li, Qingbing Zheng, Ying Gu, Ningshao Xia","doi":"10.1093/procel/pwad040","DOIUrl":"10.1093/procel/pwad040","url":null,"abstract":"<p><p>Continual evolution of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus has allowed for its gradual evasion of neutralizing antibodies (nAbs) produced in response to natural infection or vaccination. The rapid nature of these changes has incited a need for the development of superior broad nAbs (bnAbs) and/or the rational design of an antibody cocktail that can protect against the mutated virus strain. Here, we report two angiotensin-converting enzyme 2 competing nAbs-8H12 and 3E2-with synergistic neutralization but evaded by some Omicron subvariants. Cryo-electron microscopy reveals the two nAbs synergistic neutralizing virus through a rigorous pairing permitted by rearrangement of the 472-489 loop in the receptor-binding domain to avoid steric clashing. Bispecific antibodies based on these two nAbs tremendously extend the neutralizing breadth and restore neutralization against recent variants including currently dominant XBB.1.5. Together, these findings expand our understanding of the potential strategies for the neutralization of SARS-CoV-2 variants toward the design of broad-acting antibody therapeutics and vaccines.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"121-134"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9840864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protein & CellPub Date : 2024-02-01DOI: 10.1093/procel/pwad044
Weihong Wang, Bota Cui, Yongzhan Nie, Lijuan Sun, Faming Zhang
{"title":"Radiation injury and gut microbiota-based treatment.","authors":"Weihong Wang, Bota Cui, Yongzhan Nie, Lijuan Sun, Faming Zhang","doi":"10.1093/procel/pwad044","DOIUrl":"10.1093/procel/pwad044","url":null,"abstract":"<p><p>The exposure to either medical sources or accidental radiation can cause varying degrees of radiation injury (RI). RI is a common disease involving multiple human body parts and organs, yet effective treatments are currently limited. Accumulating evidence suggests gut microbiota are closely associated with the development and prevention of various RI. This article summarizes 10 common types of RI and their possible mechanisms. It also highlights the changes and potential microbiota-based treatments for RI, including probiotics, metabolites, and microbiota transplantation. Additionally, a 5P-Framework is proposed to provide a comprehensive strategy for managing RI.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"83-97"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9828306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protein & CellPub Date : 2024-02-01DOI: 10.1093/procel/pwad025
{"title":"Correction to: Enhancing prime editing efficiency and flexibility with tethered and split pegRNAs.","authors":"","doi":"10.1093/procel/pwad025","DOIUrl":"10.1093/procel/pwad025","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"156"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833442/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9888664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protein & CellPub Date : 2024-02-01DOI: 10.1093/procel/pwad041
Juan Zhang, Dingfeng Li, Keqiang He, Qiang Liu, Zhongwen Xie
{"title":"Aging-induced YTHDF aggregates impair mitochondrial function by trapping mitochondrial RNAs and suppressing their expression in the brain.","authors":"Juan Zhang, Dingfeng Li, Keqiang He, Qiang Liu, Zhongwen Xie","doi":"10.1093/procel/pwad041","DOIUrl":"10.1093/procel/pwad041","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"149-155"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833457/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9807472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protein & CellPub Date : 2024-02-01DOI: 10.1093/procel/pwad039
Shanshan Yang, Chengyu Liu, Mengmeng Jiang, Xiaoqian Liu, Lingling Geng, Yiyuan Zhang, Shuhui Sun, Kang Wang, Jian Yin, Shuai Ma, Si Wang, Juan Carlos Izpisua Belmonte, Weiqi Zhang, Jing Qu, Guang-Hui Liu
{"title":"A single-nucleus transcriptomic atlas of primate liver aging uncovers the pro-senescence role of SREBP2 in hepatocytes.","authors":"Shanshan Yang, Chengyu Liu, Mengmeng Jiang, Xiaoqian Liu, Lingling Geng, Yiyuan Zhang, Shuhui Sun, Kang Wang, Jian Yin, Shuai Ma, Si Wang, Juan Carlos Izpisua Belmonte, Weiqi Zhang, Jing Qu, Guang-Hui Liu","doi":"10.1093/procel/pwad039","DOIUrl":"10.1093/procel/pwad039","url":null,"abstract":"<p><p>Aging increases the risk of liver diseases and systemic susceptibility to aging-related diseases. However, cell type-specific changes and the underlying mechanism of liver aging in higher vertebrates remain incompletely characterized. Here, we constructed the first single-nucleus transcriptomic landscape of primate liver aging, in which we resolved cell type-specific gene expression fluctuation in hepatocytes across three liver zonations and detected aberrant cell-cell interactions between hepatocytes and niche cells. Upon in-depth dissection of this rich dataset, we identified impaired lipid metabolism and upregulation of chronic inflammation-related genes prominently associated with declined liver functions during aging. In particular, hyperactivated sterol regulatory element-binding protein (SREBP) signaling was a hallmark of the aged liver, and consequently, forced activation of SREBP2 in human primary hepatocytes recapitulated in vivo aging phenotypes, manifesting as impaired detoxification and accelerated cellular senescence. This study expands our knowledge of primate liver aging and informs the development of diagnostics and therapeutic interventions for liver aging and associated diseases.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"98-120"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833472/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9684335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protein & CellPub Date : 2024-01-03DOI: 10.1093/procel/pwad036
Zhenmeiyu Li, Guoping Liu, Lin Yang, Mengge Sun, Zhuangzhi Zhang, Zhejun Xu, Yanjing Gao, Xin Jiang, Zihao Su, Xiaosu Li, Zhengang Yang
{"title":"BMP7 expression in mammalian cortical radial glial cells increases the length of the neurogenic period.","authors":"Zhenmeiyu Li, Guoping Liu, Lin Yang, Mengge Sun, Zhuangzhi Zhang, Zhejun Xu, Yanjing Gao, Xin Jiang, Zihao Su, Xiaosu Li, Zhengang Yang","doi":"10.1093/procel/pwad036","DOIUrl":"10.1093/procel/pwad036","url":null,"abstract":"<p><p>The seat of human intelligence is the human cerebral cortex, which is responsible for our exceptional cognitive abilities. Identifying principles that lead to the development of the large-sized human cerebral cortex will shed light on what makes the human brain and species so special. The remarkable increase in the number of human cortical pyramidal neurons and the size of the human cerebral cortex is mainly because human cortical radial glial cells, primary neural stem cells in the cortex, generate cortical pyramidal neurons for more than 130 days, whereas the same process takes only about 7 days in mice. The molecular mechanisms underlying this difference are largely unknown. Here, we found that bone morphogenic protein 7 (BMP7) is expressed by increasing the number of cortical radial glial cells during mammalian evolution (mouse, ferret, monkey, and human). BMP7 expression in cortical radial glial cells promotes neurogenesis, inhibits gliogenesis, and thereby increases the length of the neurogenic period, whereas Sonic Hedgehog (SHH) signaling promotes cortical gliogenesis. We demonstrate that BMP7 signaling and SHH signaling mutually inhibit each other through regulation of GLI3 repressor formation. We propose that BMP7 drives the evolutionary expansion of the mammalian cortex by increasing the length of the neurogenic period.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"21-35"},"PeriodicalIF":21.1,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10762677/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9593016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}