Protein & Cell最新文献

筛选
英文 中文
Ergothioneine and its congeners: anti-ageing mechanisms and pharmacophore biosynthesis. 麦角硫因及其同系物:抗衰老机制和药源生物合成。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-02-29 DOI: 10.1093/procel/pwad048
Li Chen, Liping Zhang, Xujun Ye, Zixin Deng, Changming Zhao
{"title":"Ergothioneine and its congeners: anti-ageing mechanisms and pharmacophore biosynthesis.","authors":"Li Chen, Liping Zhang, Xujun Ye, Zixin Deng, Changming Zhao","doi":"10.1093/procel/pwad048","DOIUrl":"10.1093/procel/pwad048","url":null,"abstract":"<p><p>Ergothioneine, Ovothiol, and Selenoneine are sulfur/selenium-containing histidine-derived natural products widely distributed across different organisms. They exhibit significant antioxidant properties, making them as potential lead compounds for promoting health. Increasing evidence suggests that Ergothioneine is positively correlated with healthy ageing and longevity. The mechanisms underlying Ergothioneine's regulation of the ageing process at cellular and molecular levels are beginning to be understood. In this review, we provide an in-depth and extensive coverage of the anti-ageing studies on Ergothioneine and discuss its possible intracellular targeting pathways. In addition, we highlight the recent efforts in elucidating the biosynthetic details for Ergothioneine, Ovothiol, and Selenoneine, with a particular focus on the study of their pharmacophore-forming enzymology.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"191-206"},"PeriodicalIF":21.1,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903977/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10320971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: EGFR signaling augments TLR4 cell surface expression and function in macrophages via regulation of Rab5a activation. 更正为表皮生长因子受体信号通过调节 Rab5a 的活化增强巨噬细胞中 TLR4 细胞表面的表达和功能。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-02-23 DOI: 10.1093/procel/pwae002
{"title":"Correction to: EGFR signaling augments TLR4 cell surface expression and function in macrophages via regulation of Rab5a activation.","authors":"","doi":"10.1093/procel/pwae002","DOIUrl":"https://doi.org/10.1093/procel/pwae002","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":21.1,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139940702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anthrax lethal toxin and tumor necrosis factor-α synergize on intestinal epithelia to induce mouse death. 炭疽毒素和肿瘤坏死因子-α协同作用于肠上皮细胞诱导小鼠死亡。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-02-01 DOI: 10.1093/procel/pwad050
Xinhe Gao, Teng Teng, Yifei Liu, Tingting Ai, Rui Zhao, Yilong Fu, Peipei Zhang, Jiahuai Han, Yingying Zhang
{"title":"Anthrax lethal toxin and tumor necrosis factor-α synergize on intestinal epithelia to induce mouse death.","authors":"Xinhe Gao, Teng Teng, Yifei Liu, Tingting Ai, Rui Zhao, Yilong Fu, Peipei Zhang, Jiahuai Han, Yingying Zhang","doi":"10.1093/procel/pwad050","DOIUrl":"10.1093/procel/pwad050","url":null,"abstract":"<p><p>Bacillus anthracis lethal toxin (LT) is a determinant of lethal anthrax. Its function in myeloid cells is required for bacterial dissemination, and LT itself can directly trigger dysfunction of the cardiovascular system. The interplay between LT and the host responses is important in the pathogenesis, but our knowledge on this interplay remains limited. Tumor necrosis factor-α (TNF-α) is a pleiotropic pro-inflammatory cytokine induced by bacterial infections. Since LT accumulates and cytokines, predominantly TNF, amass during B. anthracis infection, co-treatment of TNF + LT in mice was used to mimic in vivo conditions for LT to function in inflamed hosts. Bone marrow transplantation and genetically engineered mice showed unexpectedly that the death of intestinal epithelial cells (IECs) rather than that of hematopoietic cells led to LT + TNF-induced lethality. Inhibition of p38α mitogen-activated protein kinase (MAPK) signaling by LT in IECs promoted TNF-induced apoptosis and necroptosis of IECs, leading to intestinal damage and mouse death. Consistently, p38α inhibition by LT enhanced TNF-mediated cell death in human colon epithelial HT-29 cells. As intestinal damage is one of the leading causes of lethality in anthrax patients, the IEC damage caused by LT + TNF would most likely be a mechanism underneath this clinical manifestation and could be a target for interventions.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"135-148"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833652/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49681598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SARS-CoV-2 ORF8 does not function in the nucleus as a histone mimic. SARS-CoV-2 ORF8 在细胞核中不具有组蛋白模拟功能。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-02-01 DOI: 10.1093/procel/pwad042
Ping Liu, Junjie Hu, Lei Wang
{"title":"SARS-CoV-2 ORF8 does not function in the nucleus as a histone mimic.","authors":"Ping Liu, Junjie Hu, Lei Wang","doi":"10.1093/procel/pwad042","DOIUrl":"10.1093/procel/pwad042","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"79-82"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9779082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two antibodies show broad, synergistic neutralization against SARS-CoV-2 variants by inducing conformational change within the RBD. 两种抗体通过诱导 RBD 的构象变化,对 SARS-CoV-2 变体显示出广泛的协同中和作用。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-02-01 DOI: 10.1093/procel/pwad040
Hui Sun, Tingting Deng, Yali Zhang, Yanling Lin, Yanan Jiang, Yichao Jiang, Yang Huang, Shuo Song, Lingyan Cui, Tingting Li, Hualong Xiong, Miaolin Lan, Liqin Liu, Yu Li, Qianjiao Fang, Kunyu Yu, Wenling Jiang, Lizhi Zhou, Yuqiong Que, Tianying Zhang, Quan Yuan, Tong Cheng, Zheng Zhang, Hai Yu, Jun Zhang, Wenxin Luo, Shaowei Li, Qingbing Zheng, Ying Gu, Ningshao Xia
{"title":"Two antibodies show broad, synergistic neutralization against SARS-CoV-2 variants by inducing conformational change within the RBD.","authors":"Hui Sun, Tingting Deng, Yali Zhang, Yanling Lin, Yanan Jiang, Yichao Jiang, Yang Huang, Shuo Song, Lingyan Cui, Tingting Li, Hualong Xiong, Miaolin Lan, Liqin Liu, Yu Li, Qianjiao Fang, Kunyu Yu, Wenling Jiang, Lizhi Zhou, Yuqiong Que, Tianying Zhang, Quan Yuan, Tong Cheng, Zheng Zhang, Hai Yu, Jun Zhang, Wenxin Luo, Shaowei Li, Qingbing Zheng, Ying Gu, Ningshao Xia","doi":"10.1093/procel/pwad040","DOIUrl":"10.1093/procel/pwad040","url":null,"abstract":"<p><p>Continual evolution of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus has allowed for its gradual evasion of neutralizing antibodies (nAbs) produced in response to natural infection or vaccination. The rapid nature of these changes has incited a need for the development of superior broad nAbs (bnAbs) and/or the rational design of an antibody cocktail that can protect against the mutated virus strain. Here, we report two angiotensin-converting enzyme 2 competing nAbs-8H12 and 3E2-with synergistic neutralization but evaded by some Omicron subvariants. Cryo-electron microscopy reveals the two nAbs synergistic neutralizing virus through a rigorous pairing permitted by rearrangement of the 472-489 loop in the receptor-binding domain to avoid steric clashing. Bispecific antibodies based on these two nAbs tremendously extend the neutralizing breadth and restore neutralization against recent variants including currently dominant XBB.1.5. Together, these findings expand our understanding of the potential strategies for the neutralization of SARS-CoV-2 variants toward the design of broad-acting antibody therapeutics and vaccines.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"121-134"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9840864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiation injury and gut microbiota-based treatment. 辐射损伤和基于肠道微生物群的治疗。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-02-01 DOI: 10.1093/procel/pwad044
Weihong Wang, Bota Cui, Yongzhan Nie, Lijuan Sun, Faming Zhang
{"title":"Radiation injury and gut microbiota-based treatment.","authors":"Weihong Wang, Bota Cui, Yongzhan Nie, Lijuan Sun, Faming Zhang","doi":"10.1093/procel/pwad044","DOIUrl":"10.1093/procel/pwad044","url":null,"abstract":"<p><p>The exposure to either medical sources or accidental radiation can cause varying degrees of radiation injury (RI). RI is a common disease involving multiple human body parts and organs, yet effective treatments are currently limited. Accumulating evidence suggests gut microbiota are closely associated with the development and prevention of various RI. This article summarizes 10 common types of RI and their possible mechanisms. It also highlights the changes and potential microbiota-based treatments for RI, including probiotics, metabolites, and microbiota transplantation. Additionally, a 5P-Framework is proposed to provide a comprehensive strategy for managing RI.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"83-97"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9828306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Enhancing prime editing efficiency and flexibility with tethered and split pegRNAs. 更正:利用系留和分离 pegRNA 提高素材编辑效率和灵活性。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-02-01 DOI: 10.1093/procel/pwad025
{"title":"Correction to: Enhancing prime editing efficiency and flexibility with tethered and split pegRNAs.","authors":"","doi":"10.1093/procel/pwad025","DOIUrl":"10.1093/procel/pwad025","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"156"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833442/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9888664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aging-induced YTHDF aggregates impair mitochondrial function by trapping mitochondrial RNAs and suppressing their expression in the brain. 衰老诱导的YTHDF聚集体通过捕获线粒体RNA并抑制其在大脑中的表达来损害线粒体功能。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-02-01 DOI: 10.1093/procel/pwad041
Juan Zhang, Dingfeng Li, Keqiang He, Qiang Liu, Zhongwen Xie
{"title":"Aging-induced YTHDF aggregates impair mitochondrial function by trapping mitochondrial RNAs and suppressing their expression in the brain.","authors":"Juan Zhang, Dingfeng Li, Keqiang He, Qiang Liu, Zhongwen Xie","doi":"10.1093/procel/pwad041","DOIUrl":"10.1093/procel/pwad041","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"149-155"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833457/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9807472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A single-nucleus transcriptomic atlas of primate liver aging uncovers the pro-senescence role of SREBP2 in hepatocytes. 灵长类动物肝脏衰老的单核转录组图谱揭示了 SREBP2 在肝细胞中的促衰老作用。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-02-01 DOI: 10.1093/procel/pwad039
Shanshan Yang, Chengyu Liu, Mengmeng Jiang, Xiaoqian Liu, Lingling Geng, Yiyuan Zhang, Shuhui Sun, Kang Wang, Jian Yin, Shuai Ma, Si Wang, Juan Carlos Izpisua Belmonte, Weiqi Zhang, Jing Qu, Guang-Hui Liu
{"title":"A single-nucleus transcriptomic atlas of primate liver aging uncovers the pro-senescence role of SREBP2 in hepatocytes.","authors":"Shanshan Yang, Chengyu Liu, Mengmeng Jiang, Xiaoqian Liu, Lingling Geng, Yiyuan Zhang, Shuhui Sun, Kang Wang, Jian Yin, Shuai Ma, Si Wang, Juan Carlos Izpisua Belmonte, Weiqi Zhang, Jing Qu, Guang-Hui Liu","doi":"10.1093/procel/pwad039","DOIUrl":"10.1093/procel/pwad039","url":null,"abstract":"<p><p>Aging increases the risk of liver diseases and systemic susceptibility to aging-related diseases. However, cell type-specific changes and the underlying mechanism of liver aging in higher vertebrates remain incompletely characterized. Here, we constructed the first single-nucleus transcriptomic landscape of primate liver aging, in which we resolved cell type-specific gene expression fluctuation in hepatocytes across three liver zonations and detected aberrant cell-cell interactions between hepatocytes and niche cells. Upon in-depth dissection of this rich dataset, we identified impaired lipid metabolism and upregulation of chronic inflammation-related genes prominently associated with declined liver functions during aging. In particular, hyperactivated sterol regulatory element-binding protein (SREBP) signaling was a hallmark of the aged liver, and consequently, forced activation of SREBP2 in human primary hepatocytes recapitulated in vivo aging phenotypes, manifesting as impaired detoxification and accelerated cellular senescence. This study expands our knowledge of primate liver aging and informs the development of diagnostics and therapeutic interventions for liver aging and associated diseases.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"98-120"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833472/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9684335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BMP7 expression in mammalian cortical radial glial cells increases the length of the neurogenic period. 哺乳动物皮质放射状胶质细胞中 BMP7 的表达可增加神经源期的长度。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-01-03 DOI: 10.1093/procel/pwad036
Zhenmeiyu Li, Guoping Liu, Lin Yang, Mengge Sun, Zhuangzhi Zhang, Zhejun Xu, Yanjing Gao, Xin Jiang, Zihao Su, Xiaosu Li, Zhengang Yang
{"title":"BMP7 expression in mammalian cortical radial glial cells increases the length of the neurogenic period.","authors":"Zhenmeiyu Li, Guoping Liu, Lin Yang, Mengge Sun, Zhuangzhi Zhang, Zhejun Xu, Yanjing Gao, Xin Jiang, Zihao Su, Xiaosu Li, Zhengang Yang","doi":"10.1093/procel/pwad036","DOIUrl":"10.1093/procel/pwad036","url":null,"abstract":"<p><p>The seat of human intelligence is the human cerebral cortex, which is responsible for our exceptional cognitive abilities. Identifying principles that lead to the development of the large-sized human cerebral cortex will shed light on what makes the human brain and species so special. The remarkable increase in the number of human cortical pyramidal neurons and the size of the human cerebral cortex is mainly because human cortical radial glial cells, primary neural stem cells in the cortex, generate cortical pyramidal neurons for more than 130 days, whereas the same process takes only about 7 days in mice. The molecular mechanisms underlying this difference are largely unknown. Here, we found that bone morphogenic protein 7 (BMP7) is expressed by increasing the number of cortical radial glial cells during mammalian evolution (mouse, ferret, monkey, and human). BMP7 expression in cortical radial glial cells promotes neurogenesis, inhibits gliogenesis, and thereby increases the length of the neurogenic period, whereas Sonic Hedgehog (SHH) signaling promotes cortical gliogenesis. We demonstrate that BMP7 signaling and SHH signaling mutually inhibit each other through regulation of GLI3 repressor formation. We propose that BMP7 drives the evolutionary expansion of the mammalian cortex by increasing the length of the neurogenic period.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"21-35"},"PeriodicalIF":21.1,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10762677/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9593016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信