Protein & Cell最新文献

筛选
英文 中文
Targeting IRG1 in tumor-associated macrophages for cancer therapy. 靶向肿瘤相关巨噬细胞中的IRG1用于癌症治疗。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-06-20 DOI: 10.1093/procel/pwaf012
Shuang Liu, Lin-Xing Wei, Qian Yu, Zhi-Wei Guo, Chang-You Zhan, Lei-Lei Chen, Yan Li, Dan Ye
{"title":"Targeting IRG1 in tumor-associated macrophages for cancer therapy.","authors":"Shuang Liu, Lin-Xing Wei, Qian Yu, Zhi-Wei Guo, Chang-You Zhan, Lei-Lei Chen, Yan Li, Dan Ye","doi":"10.1093/procel/pwaf012","DOIUrl":"10.1093/procel/pwaf012","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"478-483"},"PeriodicalIF":13.6,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143449645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging roles of RNA N4-acetylcytidine modification in reproductive health. RNA n4 -乙酰胞苷修饰在生殖健康中的新作用。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-06-20 DOI: 10.1093/procel/pwaf013
Zibaguli Wubulikasimu, Hongyu Zhao, Fengbiao Mao, Xiaolu Zhao
{"title":"Emerging roles of RNA N4-acetylcytidine modification in reproductive health.","authors":"Zibaguli Wubulikasimu, Hongyu Zhao, Fengbiao Mao, Xiaolu Zhao","doi":"10.1093/procel/pwaf013","DOIUrl":"10.1093/procel/pwaf013","url":null,"abstract":"<p><p>N4-acetylcytidine (ac4C), an emerging posttranscriptional RNA modification, plays a pivotal role in epigenetic regulation. Ac4C is detected not only in tRNA, rRNA, and mRNA, but also in miRNA, lncRNA, viral RNA, and even DNA. Functionally, ac4C stabilizes mRNA, enhances protein translation fidelity, and impacts various biological processes and diseases such as cancer, inflammation, immune regulation, neural diseases, osteogenic differentiation, cardiovascular diseases, viral infections, and replication. Current research primarily focuses on ac4C's roles in cancer progression and immunity, with emerging findings in gynecological diseases and reproduction. However, a comprehensive understanding of ac4C's implications in reproductive health is lacking. This review provides a historical perspective on ac4C's discovery and detection methods, elucidates its functions in reproductive development and gynecological disorders, and offers insights for further research in reproductive health. This review aims to pave the way for innovative therapeutic approaches and precise diagnostic tools tailored to this field.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"458-477"},"PeriodicalIF":13.6,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143450208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Setd2 overexpression rescues bivalent gene expression during SCNT-mediated ZGA. 在scnt介导的ZGA中,Setd2过表达挽救了二价基因的表达。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-06-20 DOI: 10.1093/procel/pwaf010
Xiaolei Zhang, Ruimin Xu, Yuyan Zhao, Yijia Yang, Qi Shi, Hong Wang, Xiaoyu Liu, Shaorong Gao, Chong Li
{"title":"Setd2 overexpression rescues bivalent gene expression during SCNT-mediated ZGA.","authors":"Xiaolei Zhang, Ruimin Xu, Yuyan Zhao, Yijia Yang, Qi Shi, Hong Wang, Xiaoyu Liu, Shaorong Gao, Chong Li","doi":"10.1093/procel/pwaf010","DOIUrl":"10.1093/procel/pwaf010","url":null,"abstract":"<p><p>Successful cloning through somatic cell nuclear transfer (SCNT) faces significant challenges due to epigenetic obstacles. Recent studies have highlighted the roles of H3K4me3 and H3K27me3 as potential contributors to these obstacles. However, the underlying mechanisms remain largely unclear. In this study, we generated genome-wide maps of H3K4me3 and H3K27me3 in mouse pre-implantation NT embryos. Our analysis revealed that aberrantly over-represented broad H3K4me3 domain and H3K27me3 signal lead to increased bivalent marks at gene promoters in NT embryos compared with naturally fertilized (NF) embryos at the 2-cell stage, which may link to relatively low levels of H3K36me3 in NT 2-cell embryos. Notably, the overexpression of Setd2, a H3K36me3 methyltransferase, successfully restored multiple epigenetic marks, including H3K36me3, H3K4me3, and H3K27me3. In addition, it reinstated the expression levels of ZGA-related genes by reestablishing H3K36me3 at gene body regions, which excluded H3K27me3 from bivalent promoters, ultimately improving cloning efficiency. These findings highlight the excessive bivalent state at gene promoters as a potent barrier and emphasize the removal of these barriers as a promising approach for achieving higher cloning efficiency.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"439-457"},"PeriodicalIF":13.6,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143410165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial-to-Osteoblast Conversion maintains bone homeostasis through Kindlin-2/Piezo1/TGFβ/Runx2 axis. 内皮细胞到成骨细胞的转化通过Kindlin-2/Piezo1/TGFβ/Runx2轴维持骨稳态。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-06-20 DOI: 10.1093/procel/pwae066
Guixing Ma, Yingying Han, Wanze Tang, Bo Zhou, Litong Chen, Zhen Ding, Siyuan Cheng, Di Chen, Huiling Cao
{"title":"Endothelial-to-Osteoblast Conversion maintains bone homeostasis through Kindlin-2/Piezo1/TGFβ/Runx2 axis.","authors":"Guixing Ma, Yingying Han, Wanze Tang, Bo Zhou, Litong Chen, Zhen Ding, Siyuan Cheng, Di Chen, Huiling Cao","doi":"10.1093/procel/pwae066","DOIUrl":"10.1093/procel/pwae066","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"497-502"},"PeriodicalIF":13.6,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adenosine-to-inosine RNA editing in cancer: molecular mechanisms and downstream targets. 癌症中的腺苷转肌苷 RNA 编辑:分子机制和下游靶点。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-06-20 DOI: 10.1093/procel/pwae039
Hao Cheng, Jun Yu, Chi Chun Wong
{"title":"Adenosine-to-inosine RNA editing in cancer: molecular mechanisms and downstream targets.","authors":"Hao Cheng, Jun Yu, Chi Chun Wong","doi":"10.1093/procel/pwae039","DOIUrl":"10.1093/procel/pwae039","url":null,"abstract":"<p><p>Adenosine-to-inosine (A-to-I), one of the most prevalent RNA modifications, has recently garnered significant attention. The A-to-I modification actively contributes to biological and pathological processes by affecting the structure and function of various RNA molecules, including double-stranded RNA, transfer RNA, microRNA, and viral RNA. Increasing evidence suggests that A-to-I plays a crucial role in the development of human disease, particularly in cancer, and aberrant A-to-I levels are closely associated with tumorigenesis and progression through regulation of the expression of multiple oncogenes and tumor suppressor genes. Currently, the underlying molecular mechanisms of A-to-I modification in cancer are not comprehensively understood. Here, we review the latest advances regarding the A-to-I editing pathways implicated in cancer, describing their biological functions and their connections to the disease.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"391-417"},"PeriodicalIF":13.6,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiome, metabolome, and transcriptome analyses in esophageal squamous cell carcinoma: insights into immune modulation by F. nucleatum. 食管鳞状细胞癌的微生物组、代谢组和转录组分析:洞察核酸酵母菌的免疫调节作用。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-06-20 DOI: 10.1093/procel/pwae063
Xue Zhang, Jing Han, Yudong Wang, Li Feng, Zhisong Fan, Yu Su, Wenya Song, Lan Wang, Long Wang, Hui Jin, Jiayin Liu, Dan Li, Guiying Li, Yan Liu, Jing Zuo, Zhiyu Ni
{"title":"Microbiome, metabolome, and transcriptome analyses in esophageal squamous cell carcinoma: insights into immune modulation by F. nucleatum.","authors":"Xue Zhang, Jing Han, Yudong Wang, Li Feng, Zhisong Fan, Yu Su, Wenya Song, Lan Wang, Long Wang, Hui Jin, Jiayin Liu, Dan Li, Guiying Li, Yan Liu, Jing Zuo, Zhiyu Ni","doi":"10.1093/procel/pwae063","DOIUrl":"10.1093/procel/pwae063","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"491-496"},"PeriodicalIF":13.6,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA G-quadruplex (rG4) exacerbates cellular senescence by mediating ribosome pausing. RNA g -四重体(rG4)通过介导核糖体暂停而加剧细胞衰老。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-06-12 DOI: 10.1093/procel/pwaf047
Haoxian Zhou, Shu Wu, Bin Li, Rongjinlei Zhang, Ying Zou, Mibu Cao, Anhua Xu, Kewei Zheng, Qinghua Zhou, Jia Wang, Jinping Zheng, Jianhua Yang, Yuanlong Ge, Zhanyi Lin, Zhenyu Ju
{"title":"RNA G-quadruplex (rG4) exacerbates cellular senescence by mediating ribosome pausing.","authors":"Haoxian Zhou, Shu Wu, Bin Li, Rongjinlei Zhang, Ying Zou, Mibu Cao, Anhua Xu, Kewei Zheng, Qinghua Zhou, Jia Wang, Jinping Zheng, Jianhua Yang, Yuanlong Ge, Zhanyi Lin, Zhenyu Ju","doi":"10.1093/procel/pwaf047","DOIUrl":"https://doi.org/10.1093/procel/pwaf047","url":null,"abstract":"<p><p>Loss of protein homeostasis is a hallmark of cellular senescence, and ribosome pausing plays a crucial role in the collapse of proteostasis. However, our understanding of ribosome pausing in senescent cells remains limited. In this study, we utilized ribosome profiling and G-quadruplex RNA immunoprecipitation sequencing techniques to explore the impact of RNA G-quadruplex (rG4) on the translation efficiency in senescent cells. Our results revealed a reduction in the translation efficiency of rG4-rich genes in senescent cells and demonstrated rG4 structures within coding sequence (CDS) can impede translation both in vivo and in vitro. Moreover, we observed a significant increase in the abundance of rG4 structures in senescent cells, and the stabilization of the rG4 structures further exacerbated cellular senescence. Mechanistically, the RNA helicase DHX9 functions as a key regulator of rG4 abundance, and its reduced expression in senescent cells contributing to increased ribosome pausing. Additionally, we also observed an increased abundance of rG4, an imbalance in protein homeostasis, and reduced DHX9 expression in aged mice. In summary, our findings reveal a novel biological role for rG4 and DHX9 in the regulation of translation and proteostasis, which may have implications for delaying cellular senescence and the aging process.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144275833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lamin C conserves DNA replication factors via phase separation during oxidative stress for DNA replication recovery. 层粘连蛋白C在氧化应激过程中通过相分离保护DNA复制因子,促进DNA复制恢复。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-06-11 DOI: 10.1093/procel/pwaf016
Mingkang Jia, Gan Zhao, Mengjie Sun, Xiangyang Wang, He Ren, Guangwei Xin, Qing Jiang, Chuanmao Zhang
{"title":"Lamin C conserves DNA replication factors via phase separation during oxidative stress for DNA replication recovery.","authors":"Mingkang Jia, Gan Zhao, Mengjie Sun, Xiangyang Wang, He Ren, Guangwei Xin, Qing Jiang, Chuanmao Zhang","doi":"10.1093/procel/pwaf016","DOIUrl":"https://doi.org/10.1093/procel/pwaf016","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144275832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal characterization of disease-associated neurons in the entorhinal cortex-hippocampal circuit during AD progression. 阿尔茨海默病进展期间内嗅皮层-海马回路中疾病相关神经元的时空特征
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-06-10 DOI: 10.1093/procel/pwaf042
Yuting Ma, Juan Zhang, Hankui Liu, Dingfeng Li, Sicheng Guo, Jialuo Han, Lei Wang, Shaojun Yu, Xi Su, Yongchang Gao, Xiumei Lin, A San, Yushan Peng, Guibo Li, Hui Jiang, Wei Wang, Huanming Yang, Jian Wang, Shida Zhu, Lijian Zhao, Jianguo Zhang, Qiang Liu
{"title":"Spatiotemporal characterization of disease-associated neurons in the entorhinal cortex-hippocampal circuit during AD progression.","authors":"Yuting Ma, Juan Zhang, Hankui Liu, Dingfeng Li, Sicheng Guo, Jialuo Han, Lei Wang, Shaojun Yu, Xi Su, Yongchang Gao, Xiumei Lin, A San, Yushan Peng, Guibo Li, Hui Jiang, Wei Wang, Huanming Yang, Jian Wang, Shida Zhu, Lijian Zhao, Jianguo Zhang, Qiang Liu","doi":"10.1093/procel/pwaf042","DOIUrl":"https://doi.org/10.1093/procel/pwaf042","url":null,"abstract":"<p><p>The entorhinal cortex (EC)-hippocampal (HPC) circuit is particularly vulnerable to Alzheimer's disease (AD) pathology, yet the underlying molecular mechanisms remain unclear. By employing the high-depth sequencing strategy Smart-seq2, we tracked gene expression changes across various neuron types within this circuit at different stages of AD pathology. We observed a decrease in the extent of gene expression changes in AD versus wild-type (WT) mice as the disease advanced. Functionally, we demonstrate that both mitochondrial and ribosomal pathways were increasingly activated, while neuronal pathways were inhibited with AD progression. Our findings indicate that the reduction of EC-stellate cells disrupts Meg3-mediated energy metabolism, contributing to energy dysfunction in AD. Additionally, we identified GFAP-positive neurons as a distinct population of disease-associated neurons, exhibiting a loss of neuronal-like characteristics, alongside the emergence of glia- and stem-like features. The number of GFAP-positive neurons increased with AD progression, a trend consistently observed in both AD model mice and AD patients. In summary, this study identifies and characterizes GFAP-positive neurons as a novel subtype of disease-associated neurons in AD pathology, providing insights into their potential role in disease progression.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144258876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Engineered extracellular vesicles enable high-efficient delivery of intracellular therapeutic proteins. 修正:工程细胞外囊泡能够高效地递送细胞内治疗蛋白。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-06-06 DOI: 10.1093/procel/pwaf037
{"title":"Correction to: Engineered extracellular vesicles enable high-efficient delivery of intracellular therapeutic proteins.","authors":"","doi":"10.1093/procel/pwaf037","DOIUrl":"https://doi.org/10.1093/procel/pwaf037","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144234954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信