Protein & Cell最新文献

筛选
英文 中文
Correction to: CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-κB/RelA in maintaining the homeostasis of human vascular cells.
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-02-20 DOI: 10.1093/procel/pwaf009
{"title":"Correction to: CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-κB/RelA in maintaining the homeostasis of human vascular cells.","authors":"","doi":"10.1093/procel/pwaf009","DOIUrl":"https://doi.org/10.1093/procel/pwaf009","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143468957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging roles of RNA N4-acetylcytidine modification in reproductive health.
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-02-19 DOI: 10.1093/procel/pwaf013
Zibaguli Wubulikasimu, Hongyu Zhao, Fengbiao Mao, Xiaolu Zhao
{"title":"Emerging roles of RNA N4-acetylcytidine modification in reproductive health.","authors":"Zibaguli Wubulikasimu, Hongyu Zhao, Fengbiao Mao, Xiaolu Zhao","doi":"10.1093/procel/pwaf013","DOIUrl":"https://doi.org/10.1093/procel/pwaf013","url":null,"abstract":"<p><p>N4-acetylcytidine (ac4C), an emerging post-transcriptional RNA modification, plays a pivotal role in epigenetic regulation. Ac4C is detected not only in tRNA, rRNA and mRNA, but also in miRNA, lncRNA, viral RNA, and even DNA. Functionally, ac4C stabilizes mRNA, enhances protein translation fidelity, and impacts various biological processes and diseases such as cancer, inflammation, immune regulation, neural diseases, osteogenic differentiation, cardiovascular diseases, viral infections, and replication. Current research primarily focuses on ac4C's roles in cancer progression and immunity, with emerging findings in gynecological diseases and reproduction. However, a comprehensive understanding of ac4C's implications in reproductive health is lacking. This review provides a historical perspective on ac4C's discovery and detection methods, elucidates its functions in reproductive development and gynecological disorders, and offers insights for further research in reproductive health. This review aims to pave the way for innovative therapeutic approaches and precise diagnostic tools tailored to this field.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143450208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: ALKBH1 deficiency leads to loss of homeostasis in human diploid somatic cells.
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-02-19 DOI: 10.1093/procel/pwaf008
{"title":"Correction to: ALKBH1 deficiency leads to loss of homeostasis in human diploid somatic cells.","authors":"","doi":"10.1093/procel/pwaf008","DOIUrl":"https://doi.org/10.1093/procel/pwaf008","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143459305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting IRG1 in tumor-associated macrophages for cancer therapy.
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-02-18 DOI: 10.1093/procel/pwaf012
Shuang Liu, Lin-Xing Wei, Qian Yu, Zhi-Wei Guo, Chang-You Zhan, Lei-Lei Chen, Yan Li, Dan Ye
{"title":"Targeting IRG1 in tumor-associated macrophages for cancer therapy.","authors":"Shuang Liu, Lin-Xing Wei, Qian Yu, Zhi-Wei Guo, Chang-You Zhan, Lei-Lei Chen, Yan Li, Dan Ye","doi":"10.1093/procel/pwaf012","DOIUrl":"https://doi.org/10.1093/procel/pwaf012","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143449645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Step-wise organization of genomic nuclear speckle-associated domains (SPADs) during mammalian embryonic development.
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-02-18 DOI: 10.1093/procel/pwaf015
Mengyao Kang, Tongzhen Zhang, Chao Ning, Yibing Bao, Zhenbo Liu, Lei Gao, Linghui Luan, Chao Wang, Jiang Liu, Yuwen Ke
{"title":"Step-wise organization of genomic nuclear speckle-associated domains (SPADs) during mammalian embryonic development.","authors":"Mengyao Kang, Tongzhen Zhang, Chao Ning, Yibing Bao, Zhenbo Liu, Lei Gao, Linghui Luan, Chao Wang, Jiang Liu, Yuwen Ke","doi":"10.1093/procel/pwaf015","DOIUrl":"https://doi.org/10.1093/procel/pwaf015","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143449076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryo-EM structures of Nipah virus polymerase complex reveal highly varied interactions between L and P proteins among paramyxoviruses.
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-02-18 DOI: 10.1093/procel/pwaf014
Lu Xue, Tiancai Chang, Jiacheng Gui, Zimu Li, Heyu Zhao, Bingqian Zou, Junnan Lu, Mei Li, Xin Wen, Shenghua Gao, Peng Zhan, Lijun Rong, Liqiang Feng, Peng Gong, Jun He, Xinwen Chen, Xiaoli Xiong
{"title":"Cryo-EM structures of Nipah virus polymerase complex reveal highly varied interactions between L and P proteins among paramyxoviruses.","authors":"Lu Xue, Tiancai Chang, Jiacheng Gui, Zimu Li, Heyu Zhao, Bingqian Zou, Junnan Lu, Mei Li, Xin Wen, Shenghua Gao, Peng Zhan, Lijun Rong, Liqiang Feng, Peng Gong, Jun He, Xinwen Chen, Xiaoli Xiong","doi":"10.1093/procel/pwaf014","DOIUrl":"https://doi.org/10.1093/procel/pwaf014","url":null,"abstract":"<p><p>Nipah virus (NiV) and related viruses form a distinct henipavirus genus within the Paramyxoviridae family. NiV continues to spillover into the humans causing deadly outbreaks with increasing human-bat interaction. NiV encodes the large protein (L) and phosphoprotein (P) to form the viral RNA polymerase machinery. Their sequences show limited homologies to those of non-henipavirus paramyxoviruses. We report two cryo-electron microscopy (cryo-EM) structures of the Nipah virus (NiV) polymerase L-P complex, expressed and purified in either its full-length or truncated form. The structures resolve the RNA-dependent RNA polymerase (RdRp) and polyribonucleotidyl transferase (PRNTase) domains of the L protein, as well as a tetrameric P protein bundle bound to the L-RdRp. L-protein C-terminal regions are unresolved, indicating flexibility. Two PRNTase domain zinc-binding sites, conserved in most Mononegavirales, are confirmed essential for NiV polymerase activity. The structures further reveal anchoring of the P protein bundle and P protein X domain (XD) linkers on L, via an interaction pattern distinct among Paramyxoviridae. These interactions facilitate binding of a P protein XD linker in the nucleotide entry channel and distinct positioning of other XD linkers. We show that the disruption of the L-P interactions reduces NiV polymerase activity. The reported structures should facilitate rational antiviral-drug discovery and provide a guide for the functional study of NiV polymerase.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143450206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Setd2 overexpression rescues bivalent gene expression during SCNT-mediated ZGA.
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-02-13 DOI: 10.1093/procel/pwaf010
Xiaolei Zhang, Ruimin Xu, Yuyan Zhao, Yijia Yang, Qi Shi, Hong Wang, Xiaoyu Liu, Shaorong Gao, Chong Li
{"title":"Setd2 overexpression rescues bivalent gene expression during SCNT-mediated ZGA.","authors":"Xiaolei Zhang, Ruimin Xu, Yuyan Zhao, Yijia Yang, Qi Shi, Hong Wang, Xiaoyu Liu, Shaorong Gao, Chong Li","doi":"10.1093/procel/pwaf010","DOIUrl":"https://doi.org/10.1093/procel/pwaf010","url":null,"abstract":"<p><p>Successful cloning through somatic cell nuclear transfer (SCNT) faces significant challenges due to epigenetic obstacles. Recent studies have highlighted the roles of H3K4me3 and H3K27me3 as potential contributors to these obstacles. However, the underlying mechanisms remain largely unclear. In this study, we generated genome-wide maps of H3K4me3 and H3K27me3 in mouse pre-implantation NT embryos. Our analysis revealed aberrantly over-represented broad H3K4me3 domain and H3K27me3 signal lead to increased bivalent marks at gene promoters in NT embryos compared with naturally fertilized (NF) embryos at the 2-cell stage, which may link to relatively low levels of H3K36me3 in NT 2-cell embryos. Notably, the overexpression of Setd2, a H3K36me3 methyltransferase, successfully restored multiple epigenetic marks, including H3K36me3, H3K4me3 and H3K27me3. Additionally, it reinstated the expression levels of ZGA-related genes by re-establishing H3K36me3 at gene body regions, which excluded H3K27me3 from bivalent promoters, ultimately improving cloning efficiency. These findings highlight the excessive bivalent state at gene promoters as a potent barrier and emphasize the removal of these barriers as a promising approach for achieving higher cloning efficiency.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143410165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Advances in gene and cellular therapeutic approaches for Huntington's disease.
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-02-12 DOI: 10.1093/procel/pwaf005
{"title":"Correction to: Advances in gene and cellular therapeutic approaches for Huntington's disease.","authors":"","doi":"10.1093/procel/pwaf005","DOIUrl":"https://doi.org/10.1093/procel/pwaf005","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143410164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antiviral activity of lipoxygenase against severe fever with thrombocytopenia syndrome virus. 脂氧合酶对严重发热伴血小板减少综合征病毒的抗病毒活性
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-02-01 DOI: 10.1093/procel/pwae061
Shuang Li, Xiaojie Zheng, Yunfa Zhang, Lingyu Zhang, Tong Yang, Hao Li, Caiyu Zhou, Xiao-Ai Zhang, Li-Zeng Gao, Wei Liu
{"title":"Antiviral activity of lipoxygenase against severe fever with thrombocytopenia syndrome virus.","authors":"Shuang Li, Xiaojie Zheng, Yunfa Zhang, Lingyu Zhang, Tong Yang, Hao Li, Caiyu Zhou, Xiao-Ai Zhang, Li-Zeng Gao, Wei Liu","doi":"10.1093/procel/pwae061","DOIUrl":"10.1093/procel/pwae061","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"143-147"},"PeriodicalIF":13.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786719/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RADICAL: a rationally designed ion channel activated by ligand for chemogenetics. RADICAL:通过配体激活的合理设计的离子通道,用于化学遗传学。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2025-02-01 DOI: 10.1093/procel/pwae048
Heng Zhang, Zhiwei Zheng, Xiaoying Chen, Lizhen Xu, Chen Guo, Jiawei Wang, Yihui Cui, Fan Yang
{"title":"RADICAL: a rationally designed ion channel activated by ligand for chemogenetics.","authors":"Heng Zhang, Zhiwei Zheng, Xiaoying Chen, Lizhen Xu, Chen Guo, Jiawei Wang, Yihui Cui, Fan Yang","doi":"10.1093/procel/pwae048","DOIUrl":"10.1093/procel/pwae048","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"136-142"},"PeriodicalIF":13.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786721/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信