Protein & Cell最新文献

筛选
英文 中文
SMAD2/3-SMYD2 and developmental transcription factors cooperate with cell cycle inhibitors to guide tissue formation. SMAD2/3-SMYD2 和发育转录因子与细胞周期抑制剂合作,引导组织形成。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-05-17 DOI: 10.1093/procel/pwae031
Stefania Militi, Reshma Nibhani, Martin Pook, Siim Pauklin
{"title":"SMAD2/3-SMYD2 and developmental transcription factors cooperate with cell cycle inhibitors to guide tissue formation.","authors":"Stefania Militi, Reshma Nibhani, Martin Pook, Siim Pauklin","doi":"10.1093/procel/pwae031","DOIUrl":"https://doi.org/10.1093/procel/pwae031","url":null,"abstract":"<p><p>Tissue formation and organ homeostasis is achieved by precise coordination of proliferation and differentiation of stem cells and progenitors. While deregulation of these processes can result in degenerative disease or cancer, their molecular interplays remain unclear. Here we show that the switch of human pluripotent stem cell (hPSC) self-renewal to differentiation is associated with the induction of distinct cyclin dependent kinase inhibitors (CDKIs). In hPSCs, Activin/Nodal/TGFβ signalling maintains CDKIs in a poised state via SMAD2/3-NANOG-OCT4-EZH2-SNON transcriptional complex. Upon gradual differentiation, CDKIs are induced by successive transcriptional complexes between SMAD2/3-SMYD2 and developmental regulators such as EOMES, thereby lengthening the G1 phase. This, in turn, induces SMAD2/3 transcriptional activity by blocking its linker phosphorylation. Such SMAD2/3-CDKI positive feedback loops drive the exit from pluripotency and stepwise cell fate specification that could be harnessed for producing cells for therapeutic applications. Our study uncovers fundamental mechanisms how cell fate specification is interconnected to cell cycle dynamics and provides insight to autonomous circuitries governing tissue self-formation.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":21.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IL-24 promotes atopic dermatitis-like inflammation through driving MRSA-induced allergic responses. IL-24 通过驱动 MRSA 诱导的过敏反应,促进特应性皮炎样炎症。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-05-16 DOI: 10.1093/procel/pwae030
Xinmin Qian, Meiyi Tong, Tianqing Zhang, Qingqing Li, Meng Hua, Nan Zhou, Wenwen Zeng
{"title":"IL-24 promotes atopic dermatitis-like inflammation through driving MRSA-induced allergic responses.","authors":"Xinmin Qian, Meiyi Tong, Tianqing Zhang, Qingqing Li, Meng Hua, Nan Zhou, Wenwen Zeng","doi":"10.1093/procel/pwae030","DOIUrl":"https://doi.org/10.1093/procel/pwae030","url":null,"abstract":"<p><p>Atopic dermatitis (AD) is a prevalent inflammatory skin disorder in which patients experience recurrent eczematous lesions and intense itching. The colonization of Staphylococcus aureus (S. aureus) is correlated with the severity of the disease, but its role in AD development remains elusive. Using single-cell RNA sequencing, we uncovered that keratinocytes activate a distinct immune response characterized by induction of Il24 when exposed to methicillin-resistant S. aureus (MRSA). Further experiments using animal models showed that the administration of recombinant IL-24 protein worsened AD-like pathology. Genetic ablation of Il24 or the receptor Il20rb in keratinocytes alleviated allergic inflammation and atopic march. Mechanistically, IL-24 acted through its heterodimeric receptors on keratinocytes and augmented the production of IL-33, which in turn aggravated type 2 immunity and AD-like skin conditions. Overall, these findings establish IL-24 as a critical factor for onset and progression of AD and a compelling therapeutic target.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":21.1,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140945760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. 阿尔茨海默病:对病理学、分子机制和治疗的见解。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-05-11 DOI: 10.1093/procel/pwae026
Qiuyang Zheng, Xin Wang
{"title":"Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy.","authors":"Qiuyang Zheng, Xin Wang","doi":"10.1093/procel/pwae026","DOIUrl":"https://doi.org/10.1093/procel/pwae026","url":null,"abstract":"<p><p>Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":21.1,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noncoding RNA Terc-53 and hyaluronan receptor Hmmr regulate ageing in mice. 非编码 RNA Terc-53 和透明质酸受体 Hmmr 可调节小鼠的衰老。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-05-09 DOI: 10.1093/procel/pwae023
Sipeng Wu, Yiqi Cai, Lixiao Zhang, Xiang Li, Xu Liu, Guangkeng Zhou, Hongdi Luo, Renjian Li, Yujia Huo, Zhirong Zhang, Siyi Chen, Jinliang Huang, Jiahao Shi, Shanwei Ding, Zhe Sun, Zizhuo Zhou, Pengcheng Wang, Geng Wang
{"title":"Noncoding RNA Terc-53 and hyaluronan receptor Hmmr regulate ageing in mice.","authors":"Sipeng Wu, Yiqi Cai, Lixiao Zhang, Xiang Li, Xu Liu, Guangkeng Zhou, Hongdi Luo, Renjian Li, Yujia Huo, Zhirong Zhang, Siyi Chen, Jinliang Huang, Jiahao Shi, Shanwei Ding, Zhe Sun, Zizhuo Zhou, Pengcheng Wang, Geng Wang","doi":"10.1093/procel/pwae023","DOIUrl":"https://doi.org/10.1093/procel/pwae023","url":null,"abstract":"<p><p>One of the basic questions in the ageing field is whether there is fundamental difference between the ageing of lower invertebrates and mammals. A major difference between the lower invertebrates and mammals is the abundancy of noncoding RNAs, most of which are not conserved. We have previously identified a noncoding RNA Terc-53 that is derived from the RNA component of telomerase Terc. To study its physiological functions, we generated two transgenic mouse models overexpressing the RNA in wild-type and early-ageing Terc-/- backgrounds. Terc-53 mice showed age-related cognition decline and shortened life span, even though no developmental defects or physiological abnormality at early age was observed, indicating its involvement in normal ageing of mammals. Subsequent mechanistic study identified hyaluronan-mediated motility receptor (Hmmr) as the main effector of Terc-53. Terc-53 mediates the degradation of Hmmr, leading to an increase of inflammation in the affected tissues, accelerating organismal ageing. AAV-delivered supplementation of Hmmr in the hippocampus reversed the cognition decline in Terc-53 transgenic mice. Neither Terc-53 nor Hmmr has homologs in C. elegans. Neither do arthropods express hyaluronan (Stern 2017). These findings demonstrate the complexity of ageing in mammals, and open new paths for exploring noncoding RNA and Hmmr as means of treating age-related physical debilities and improving healthspan.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":21.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140892318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring unconventional attributes of red blood cells and their potential applications in biomedicine. 探索红细胞的非传统属性及其在生物医学中的潜在应用。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2024-05-07 DOI: 10.1093/procel/pwae001
Alkmini T Anastasiadi, Vasiliki-Zoi Arvaniti, Krystalyn E Hudson, Anastasios G Kriebardis, Constantinos Stathopoulos, Angelo D'Alessandro, Steven L Spitalnik, Vassilis L Tzounakas
{"title":"Exploring unconventional attributes of red blood cells and their potential applications in biomedicine.","authors":"Alkmini T Anastasiadi, Vasiliki-Zoi Arvaniti, Krystalyn E Hudson, Anastasios G Kriebardis, Constantinos Stathopoulos, Angelo D'Alessandro, Steven L Spitalnik, Vassilis L Tzounakas","doi":"10.1093/procel/pwae001","DOIUrl":"10.1093/procel/pwae001","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"315-330"},"PeriodicalIF":13.6,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074998/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139547025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of genetic code expansion technology in eukaryotes. 遗传密码扩展技术在真核生物中的应用。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-05-07 DOI: 10.1093/procel/pwad051
Qiao-Ru Guo, Yu J Cao
{"title":"Applications of genetic code expansion technology in eukaryotes.","authors":"Qiao-Ru Guo, Yu J Cao","doi":"10.1093/procel/pwad051","DOIUrl":"10.1093/procel/pwad051","url":null,"abstract":"<p><p>Unnatural amino acids (UAAs) have gained significant attention in protein engineering and drug development owing to their ability to introduce new chemical functionalities to proteins. In eukaryotes, genetic code expansion (GCE) enables the incorporation of UAAs and facilitates posttranscriptional modification (PTM), which is not feasible in prokaryotic systems. GCE is also a powerful tool for cell or animal imaging, the monitoring of protein interactions in target cells, drug development, and switch regulation. Therefore, there is keen interest in utilizing GCE in eukaryotic systems. This review provides an overview of the application of GCE in eukaryotic systems and discusses current challenges that need to be addressed.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"331-363"},"PeriodicalIF":21.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074999/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41238103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aging hallmarks of the primate ovary revealed by spatiotemporal transcriptomics. 时空转录组学揭示灵长类卵巢衰老特征
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-05-07 DOI: 10.1093/procel/pwad063
Huifen Lu, Ying Jing, Chen Zhang, Shuai Ma, Weiqi Zhang, Daoyuan Huang, Bin Zhang, Yuesheng Zuo, Yingying Qin, Guang-Hui Liu, Yang Yu, Jing Qu, Si Wang
{"title":"Aging hallmarks of the primate ovary revealed by spatiotemporal transcriptomics.","authors":"Huifen Lu, Ying Jing, Chen Zhang, Shuai Ma, Weiqi Zhang, Daoyuan Huang, Bin Zhang, Yuesheng Zuo, Yingying Qin, Guang-Hui Liu, Yang Yu, Jing Qu, Si Wang","doi":"10.1093/procel/pwad063","DOIUrl":"10.1093/procel/pwad063","url":null,"abstract":"<p><p>The ovary is indispensable for female reproduction, and its age-dependent functional decline is the primary cause of infertility. However, the molecular basis of ovarian aging in higher vertebrates remains poorly understood. Herein, we apply spatiotemporal transcriptomics to benchmark architecture organization as well as cellular and molecular determinants in young primate ovaries and compare these to aged primate ovaries. From a global view, somatic cells within the non-follicle region undergo more pronounced transcriptional fluctuation relative to those in the follicle region, likely constituting a hostile microenvironment that facilitates ovarian aging. Further, we uncovered that inflammation, the senescent-associated secretory phenotype, senescence, and fibrosis are the likely primary contributors to ovarian aging (PCOA). Of note, we identified spatial co-localization between a PCOA-featured spot and an unappreciated MT2 (Metallothionein 2) highly expressing spot (MT2high) characterized by high levels of inflammation, potentially serving as an aging hotspot in the primate ovary. Moreover, with advanced age, a subpopulation of MT2high accumulates, likely disseminating and amplifying the senescent signal outward. Our study establishes the first primate spatiotemporal transcriptomic atlas, advancing our understanding of mechanistic determinants underpinning primate ovarian aging and unraveling potential biomarkers and therapeutic targets for aging and age-associated human ovarian disorders.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"364-384"},"PeriodicalIF":21.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11075111/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138831229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. 更正:用源自患者的诱导多能干细胞模拟 CADASIL 血管病变。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-05-07 DOI: 10.1093/procel/pwad059
{"title":"Correction to: Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells.","authors":"","doi":"10.1093/procel/pwad059","DOIUrl":"10.1093/procel/pwad059","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"393"},"PeriodicalIF":21.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074989/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138807224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degeneration Directory: a multi-omics web resource for degenerative diseases. 变性目录:退化性疾病的多组学网络资源。
IF 13.6 1区 生物学
Protein & Cell Pub Date : 2024-05-07 DOI: 10.1093/procel/pwad066
Haoteng Yan, Changfa Lu, Chenyang Lan, Si Wang, Weiqi Zhang, Zan He, Jinghao Hu, Jiaqi Ai, Guang-Hui Liu, Shuai Ma, Yuanchun Zhou, Jing Qu
{"title":"Degeneration Directory: a multi-omics web resource for degenerative diseases.","authors":"Haoteng Yan, Changfa Lu, Chenyang Lan, Si Wang, Weiqi Zhang, Zan He, Jinghao Hu, Jiaqi Ai, Guang-Hui Liu, Shuai Ma, Yuanchun Zhou, Jing Qu","doi":"10.1093/procel/pwad066","DOIUrl":"10.1093/procel/pwad066","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"385-392"},"PeriodicalIF":13.6,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074994/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139049212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissecting caspase-2-mediated cell death: from intrinsic PIDDosome activation to chemical modulation. 剖析caspase-2介导的细胞死亡:从内在PIDDosome激活到化学调制。
IF 21.1 1区 生物学
Protein & Cell Pub Date : 2024-04-27 DOI: 10.1093/procel/pwae020
Mengxue Zeng, Kun Wang, Qingcui Wu, Jingjin Ding, Dan Xie, Xiangbing Qi, Feng Shao
{"title":"Dissecting caspase-2-mediated cell death: from intrinsic PIDDosome activation to chemical modulation.","authors":"Mengxue Zeng, Kun Wang, Qingcui Wu, Jingjin Ding, Dan Xie, Xiangbing Qi, Feng Shao","doi":"10.1093/procel/pwae020","DOIUrl":"https://doi.org/10.1093/procel/pwae020","url":null,"abstract":"<p><p>Caspase-2, a highly conserved member of the caspase family, is considered an initiator caspase that triggers apoptosis in response to some cellular stresses. Previous studies suggest that an intracellular multi-protein complex PIDDosome, induced by genotoxic stress, serves as a platform for caspase-2 activation. However, due to caspase-2's inability to process effector caspases, the mechanism underlying caspase-2-mediated cell death upon PIDDosome activation remains unclear. Here we conducted an unbiased genome-wide genetic screen and identified that the Bcl2 family protein BID is required for PIDDosome-induced, caspase-2-mediated apoptosis. PIDDosome-activated caspase-2 directly and functionally processes BID to signal the mitochondrial pathway for apoptosis induction. Additionally, a designed chemical screen identified a compound, HUHS015, that specifically activates caspase-2-mediated apoptosis. HUHS015-stimulated apoptosis also requires BID but is independent of the PIDDosome. Through extensive structure-activity relationship efforts, we identified a derivative with a potency of ~ 60 nmol/L in activating caspase-2-mediated apoptosis. The HUHS015-series of compounds act as efficient agonists that directly target the interdomain linker in caspase-2, representing a new mode of initiator caspase activation. Human and mouse caspase-2 differ in two crucial residues in the linker, rendering a selectivity of the agonists for human caspase-2. The caspase-2 agonists are valuable tools to explore the physiological roles of caspase-2-mediated cell death and a base for developing small-molecule drugs for relevant diseases.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":21.1,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140869069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信