{"title":"Native dynamics and allosteric responses in PTP1B probed by high-resolution HDX-MS.","authors":"Virgil A Woods, Rinat R Abzalimov, Daniel A Keedy","doi":"10.1002/pro.5024","DOIUrl":"10.1002/pro.5024","url":null,"abstract":"<p><p>Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for obesity, diabetes, and certain types of cancer. In particular, allosteric inhibitors hold potential for therapeutic use, but an incomplete understanding of conformational dynamics and allostery in this protein has hindered their development. Here, we interrogate solution dynamics and allosteric responses in PTP1B using high-resolution hydrogen-deuterium exchange mass spectrometry (HDX-MS), an emerging and powerful biophysical technique. Using HDX-MS, we obtain a detailed map of backbone amide exchange that serves as a proxy for the solution dynamics of apo PTP1B, revealing several flexible loops interspersed among more constrained and rigid regions within the protein structure, as well as local regions that exchange faster than expected from their secondary structure and solvent accessibility. We demonstrate that our HDX rate data obtained in solution adds value to estimates of conformational heterogeneity derived from a pseudo-ensemble constructed from ~200 crystal structures of PTP1B. Furthermore, we report HDX-MS maps for PTP1B with active-site versus allosteric small-molecule inhibitors. These maps suggest distinct and widespread effects on protein dynamics relative to the apo form, including changes in locations distal (>35 Å) from the respective ligand binding sites. These results illuminate that allosteric inhibitors of PTP1B can induce unexpected changes in dynamics that extend beyond the previously understood allosteric network. Together, our data suggest a model of BB3 allostery in PTP1B that combines conformational restriction of active-site residues with compensatory liberation of distal residues that aid in entropic balancing. Overall, our work showcases the potential of HDX-MS for elucidating aspects of protein conformational dynamics and allosteric effects of small-molecule ligands and highlights the potential of integrating HDX-MS alongside other complementary methods, such as room-temperature X-ray crystallography, NMR spectroscopy, and molecular dynamics simulations, to guide the development of new therapeutics.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iman Asakereh, Nicole R Rutbeek, Manvir Singh, David Davidson, Gerd Prehna, Mazdak Khajehpour
{"title":"The Streptococcus phage protein paratox is an intrinsically disordered protein.","authors":"Iman Asakereh, Nicole R Rutbeek, Manvir Singh, David Davidson, Gerd Prehna, Mazdak Khajehpour","doi":"10.1002/pro.5037","DOIUrl":"10.1002/pro.5037","url":null,"abstract":"<p><p>The bacteriophage protein paratox (Prx) blocks quorum sensing in its streptococcal host by directly binding the signal receptor and transcription factor ComR. This reduces the ability of Streptococcus to uptake environmental DNA and protects phage DNA from damage by recombination. Past work characterizing the Prx:ComR molecular interaction revealed that paratox adopts a well-ordered globular fold when bound to ComR. However, solution-state biophysical measurements suggested that Prx may be conformationally dynamic. To address this discrepancy, we investigated the stability and dynamic properties of Prx in solution using circular dichroism, nuclear magnetic resonance, and several fluorescence-based protein folding assays. Our work shows that under dilute buffer conditions Prx is intrinsically disordered. We also show that the addition of kosmotropic salts or protein stabilizing osmolytes induces Prx folding. However, the solute stabilized fold is different from the conformation Prx adopts when it is bound to ComR. Furthermore, we have characterized Prx folding thermodynamics and folding kinetics through steady-state fluorescence and stopped flow kinetic measurements. Our results show that Prx is a highly dynamic protein in dilute solution, folding and refolding within the 10 ms timescale. Overall, our results demonstrate that the streptococcal phage protein Prx is an intrinsically disordered protein in a two-state equilibrium with a solute-stabilized folded form. Furthermore, the solute-stabilized fold is likely the predominant form of Prx in a solute-crowded bacterial cell. Finally, our work suggests that Prx binds and inhibits ComR, and thus quorum sensing in Streptococcus, by a combination of conformational selection and induced-fit binding mechanisms.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129628/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taiasean Wu, Zachary J Gale-Day, Jason E Gestwicki
{"title":"DSFworld: A flexible and precise tool to analyze differential scanning fluorimetry data.","authors":"Taiasean Wu, Zachary J Gale-Day, Jason E Gestwicki","doi":"10.1002/pro.5022","DOIUrl":"10.1002/pro.5022","url":null,"abstract":"<p><p>Differential scanning fluorimetry (DSF) is a method to determine the apparent melting temperature (Tma) of a purified protein. In DSF, the raw unfolding curves from which Tma is calculated vary widely in shape and complexity. However, the tools available for calculating Tma are only compatible with the simplest of DSF curves, hindering many otherwise straightforward applications of the technology. To overcome this limitation, we designed new mathematical models for Tma calculation that accommodate common forms of variation in DSF curves, including the number of transitions, the presence of high initial signal, and temperature-dependent signal decay. When tested these models against DSFbase, an open-source database of 6235 raw, real-life DSF curves, these models outperformed the existing standard approaches of sigmoid fitting and maximum of the first derivative. To make these models accessible, we created an open-source software and website, DSFworld (https://gestwickilab.shinyapps.io/dsfworld/). In addition to these improved fitting capabilities, DSFworld also includes features that overcome the practical limitations of many analysis workflows, including automatic reformatting of raw data exported from common qPCR instruments, labeling of data based on experimental variables, and flexible interactive plotting. We hope that DSFworld will enable more streamlined and accurate calculation of Tma values for DSF experiments.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140923038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua A Dudley, Sojeong Park, Oliver Cho, Nicholas G M Wells, Meagan E MacDonald, Katerina M Blejec, Emmanuel Fetene, Eric Zanderigo, Scott Houliston, Jennifer C Liddle, Chad M Dashnaw, T Michael Sabo, Bryan F Shaw, Jeremy L Balsbaugh, Gabriel J Rocklin, Colin A Smith
{"title":"Heat-induced structural and chemical changes to a computationally designed miniprotein.","authors":"Joshua A Dudley, Sojeong Park, Oliver Cho, Nicholas G M Wells, Meagan E MacDonald, Katerina M Blejec, Emmanuel Fetene, Eric Zanderigo, Scott Houliston, Jennifer C Liddle, Chad M Dashnaw, T Michael Sabo, Bryan F Shaw, Jeremy L Balsbaugh, Gabriel J Rocklin, Colin A Smith","doi":"10.1002/pro.4991","DOIUrl":"10.1002/pro.4991","url":null,"abstract":"<p><p>The de novo design of miniprotein inhibitors has recently emerged as a new technology to create proteins that bind with high affinity to specific therapeutic targets. Their size, ease of expression, and apparent high stability makes them excellent candidates for a new class of protein drugs. However, beyond circular dichroism melts and hydrogen/deuterium exchange experiments, little is known about their dynamics, especially at the elevated temperatures they seemingly tolerate quite well. To address that and gain insight for future designs, we have focused on identifying unintended and previously overlooked heat-induced structural and chemical changes in a particularly stable model miniprotein, EHEE_rd2_0005. Nuclear magnetic resonance (NMR) studies suggest the presence of dynamics on multiple time and temperature scales. Transiently elevating the temperature results in spontaneous chemical deamidation visible in the NMR spectra, which we validate using both capillary electrophoresis and mass spectrometry (MS) experiments. High temperatures also result in greatly accelerated intrinsic rates of hydrogen exchange and signal loss in NMR heteronuclear single quantum coherence spectra from local unfolding. These losses are in excellent agreement with both room temperature hydrogen exchange experiments and hydrogen bond disruption in replica exchange molecular dynamics simulations. Our analysis reveals important principles for future miniprotein designs and the potential for high stability to result in long-lived alternate conformational states.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erik Zavala, Stephen Dansereau, Michael J Burke, James M Lipchock, Federica Maschietto, Victor Batista, J Patrick Loria
{"title":"A salt bridge of the C-terminal carboxyl group regulates PHPT1 substrate affinity and catalytic activity.","authors":"Erik Zavala, Stephen Dansereau, Michael J Burke, James M Lipchock, Federica Maschietto, Victor Batista, J Patrick Loria","doi":"10.1002/pro.5009","DOIUrl":"10.1002/pro.5009","url":null,"abstract":"<p><p>PHPT1 is a histidine phosphatase that modulates signaling in eukaryotes through its catalytic activity. Here, we present an analysis of the structure and dynamics of PHPT1 through a combination of solution NMR, molecular dynamics, and biochemical experiments. We identify a salt bridge formed between the R78 guanidinium moiety and the C-terminal carboxyl group on Y125 that is critical for ligand binding. Disruption of the salt bridge by appending a glycine residue at the C-terminus (G126) leads to a decrease in catalytic activity and binding affinity for the pseudo substrate, para-nitrophenylphosphate (pNPP), as well as the active site inhibitor, phenylphosphonic acid (PPA). We show through NMR chemical shift, <sup>15</sup>N relaxation measurements, and analysis of molecular dynamics trajectories, that removal of this salt bridge results in an active site that is altered both structurally and dynamically thereby significantly impacting enzymatic function and confirming the importance of this electrostatic interaction.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094782/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jorge Luis Medrano-Cerano, Luis Fernando Cofas-Vargas, Eduardo Leyva, Jesús Antonio Rauda-Ceja, Mateo Calderón-Vargas, Patricia Cano-Sánchez, Gustavo Titaux-Delgado, Carolina Monserrath Melchor-Meneses, Andrés Hernández-Arana, Federico Del Río-Portilla, Enrique García-Hernández
{"title":"Decoding the mechanism governing the structural stability of wheat germ agglutinin and its isolated domains: A combined calorimetric, NMR, and MD simulation study.","authors":"Jorge Luis Medrano-Cerano, Luis Fernando Cofas-Vargas, Eduardo Leyva, Jesús Antonio Rauda-Ceja, Mateo Calderón-Vargas, Patricia Cano-Sánchez, Gustavo Titaux-Delgado, Carolina Monserrath Melchor-Meneses, Andrés Hernández-Arana, Federico Del Río-Portilla, Enrique García-Hernández","doi":"10.1002/pro.5020","DOIUrl":"10.1002/pro.5020","url":null,"abstract":"<p><p>Wheat germ agglutinin (WGA) demonstrates potential as an oral delivery agent owing to its selective binding to carbohydrates and its capacity to traverse biological membranes. In this study, we employed differential scanning calorimetry and molecular dynamics simulations to comprehensively characterize the thermal unfolding process of both the complete lectin and its four isolated domains. Furthermore, we present the nuclear magnetic resonance structures of three domains that were previously lacking experimental structures in their isolated forms. Our results provide a collective understanding of the energetic and structural factors governing the intricate unfolding mechanism of the complete agglutinin, shedding light on the specific role played by each domain in this process. The analysis revealed negligible interdomain cooperativity, highlighting instead significant coupling between dimer dissociation and the unfolding of the more labile domains. By comparing the dominant interactions, we rationalized the stability differences among the domains. Understanding the structural stability of WGA opens avenues for enhanced drug delivery strategies, underscoring its potential as a promising carrier throughout the gastrointestinal environment.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094770/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative entropy-enthalpy compensation in intraprotein interactions from model compound data.","authors":"Thomas W Redvanly, Gary J Pielak","doi":"10.1002/pro.5013","DOIUrl":"10.1002/pro.5013","url":null,"abstract":"<p><p>Many small globular proteins exist in only two states-the physiologically relevant folded state and an inactive unfolded state. The active state is stabilized by numerous weak attractive contacts, including hydrogen bonds, other polar interactions, and the hydrophobic effect. Knowledge of these interactions is key to understanding the fundamental equilibrium thermodynamics of protein folding and stability. We focus on one such interaction, that between amide and aromatic groups. We provide a statistically convincing case for quantitative, linear entropy-enthalpy compensation in forming aromatic-amide interactions using published model compound transfer-free energy data.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insights on the G protein-coupled receptor helix 8 solution structure and orientation using a neurotensin receptor 1 peptide.","authors":"James B Bower, Scott A Robson, Joshua J Ziarek","doi":"10.1002/pro.4976","DOIUrl":"10.1002/pro.4976","url":null,"abstract":"<p><p>G-protein coupled receptors (GPCRs) are the largest class of membrane proteins encoded in the human genome with high pharmaceutical relevance and implications to human health. These receptors share a prevalent architecture of seven transmembrane helices followed by an intracellular, amphipathic helix 8 (H8) and a disordered C-terminal tail (Ctail). Technological advancements have led to over 1000 receptor structures in the last two decades, yet frequently H8 and the Ctail are conformationally heterogeneous or altogether absent. Here we synthesize a peptide comprising the neurotensin receptor 1 (NTS1) H8 and Ctail (H8-Ctail) to investigate its structural stability, conformational dynamics, and orientation in the presence of detergent and phospholipid micelles, which mimic the membrane. Circular dichroism (CD) and nuclear magnetic resonance (NMR) measurements confirm that zwitterionic 1,2-diheptanoyl-sn-glycero-3-phosphocholine is a potent stabilizer of H8 structure, whereas the commonly-used branched detergent lauryl maltose neopentyl glycol (LMNG) is unable to completely stabilize the helix - even at amounts four orders of magnitude greater than its critical micellar concentration. We then used NMR spectroscopy to assign the backbone chemical shifts. A series of temperature and lipid titrations were used to define the H8 boundaries as F376-R392 from chemical shift perturbations, changes in resonance intensity, and chemical-shift-derived phi/psi angles. Finally, the H8 azimuthal and tilt angles, defining the helix orientation relative of the membrane normal were measured using paramagnetic relaxation enhancement NMR. Taken together, our studies reveal the H8-Ctail region is sensitive to membrane physicochemical properties and is capable of more adaptive behavior than previously suggested by static structural techniques.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099793/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shankar Raj Devkota, Pramod Aryal, Matthew C J Wilce, Richard J Payne, Martin J Stone, Ram Prasad Bhusal
{"title":"Structural basis of chemokine recognition by the class A3 tick evasin EVA-ACA1001.","authors":"Shankar Raj Devkota, Pramod Aryal, Matthew C J Wilce, Richard J Payne, Martin J Stone, Ram Prasad Bhusal","doi":"10.1002/pro.4999","DOIUrl":"10.1002/pro.4999","url":null,"abstract":"<p><p>Ticks produce chemokine-binding proteins, known as evasins, in their saliva to subvert the host's immune response. Evasins bind to chemokines and thereby inhibit the activation of their cognate chemokine receptors, thus suppressing leukocyte recruitment and inflammation. We recently described subclass A3 evasins, which, like other class A evasins, exclusively target CC chemokines but appear to use a different binding site architecture to control target selectivity among CC chemokines. We now describe the structural basis of chemokine recognition by the class A3 evasin EVA-ACA1001. EVA-ACA1001 binds to almost all human CC chemokines and inhibits receptor activation. Truncation mutants of EVA-ACA1001 showed that, unlike class A1 evasins, both the N- and C-termini of EVA-ACA1001 play minimal roles in chemokine binding. To understand the structural basis of its broad chemokine recognition, we determined the crystal structure of EVA-ACA1001 in complex with the human chemokine CCL16. EVA-ACA1001 forms backbone-backbone interactions with the CC motif of CCL16, a conserved feature of all class A evasin-chemokine complexes. A hydrophobic pocket in EVA-ACA1001, formed by several aromatic side chains and the unique disulfide bond of class A3 evasins, accommodates the residue immediately following the CC motif (the \"CC + 1 residue\") of CCL16. This interaction is shared with EVA-AAM1001, the only other class A3 evasins characterized to date, suggesting it may represent a common mechanism that accounts for the broad recognition of CC chemokines by class A3 evasins.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140899359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of a novel format scFv×VHH single-chain biparatopic antibody against metal binding protein MtsA.","authors":"Risa Asano, Miyu Takeuchi, Makoto Nakakido, Sho Ito, Chihiro Aikawa, Takeshi Yokoyama, Akinobu Senoo, Go Ueno, Satoru Nagatoishi, Yoshikazu Tanaka, Ichiro Nakagawa, Kouhei Tsumoto","doi":"10.1002/pro.5017","DOIUrl":"10.1002/pro.5017","url":null,"abstract":"<p><p>Biparatopic antibodies (bpAbs) are engineered antibodies that bind to multiple different epitopes within the same antigens. bpAbs comprise diverse formats, including fragment-based formats, and choosing the appropriate molecular format for a desired function against a target molecule is a challenging task. Moreover, optimizing the design of constructs requires selecting appropriate antibody modalities and adjusting linker length for individual bpAbs. Therefore, it is crucial to understand the characteristics of bpAbs at the molecular level. In this study, we first obtained single-chain variable fragments and camelid heavy-chain variable domains targeting distinct epitopes of the metal binding protein MtsA and then developed a novel format single-chain bpAb connecting these fragment antibodies with various linkers. The physicochemical properties, binding activities, complex formation states with antigen, and functions of the bpAb were analyzed using multiple approaches. Notably, we found that the assembly state of the complexes was controlled by a linker and that longer linkers tended to form more compact complexes. These observations provide detailed molecular information that should be considered in the design of bpAbs.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}