Protein Science最新文献

筛选
英文 中文
Mutational analysis reveals the importance of residues of the access tunnel inhibitor site to human P-glycoprotein (ABCB1)-mediated transport. 突变分析揭示了通路隧道抑制位点残基对人P-糖蛋白(ABCB1)介导的转运的重要性。
IF 4.5 3区 生物学
Protein Science Pub Date : 2024-09-01 DOI: 10.1002/pro.5155
Paula B Salazar, Megumi Murakami, Nandhini Ranganathan, Stewart R Durell, Suresh V Ambudkar
{"title":"Mutational analysis reveals the importance of residues of the access tunnel inhibitor site to human P-glycoprotein (ABCB1)-mediated transport.","authors":"Paula B Salazar, Megumi Murakami, Nandhini Ranganathan, Stewart R Durell, Suresh V Ambudkar","doi":"10.1002/pro.5155","DOIUrl":"10.1002/pro.5155","url":null,"abstract":"<p><p>Human P-glycoprotein (P-gp) utilizes energy from ATP hydrolysis for the efflux of chemically dissimilar amphipathic small molecules and plays an important role in the development of resistance to chemotherapeutic agents in most cancers. Efforts to overcome drug resistance have focused on inhibiting P-gp-mediated drug efflux. Understanding the features distinguishing P-gp inhibitors from substrates is critical. Cryo-electron microscopy has revealed distinct binding patterns, emphasizing the role of the L-site or access tunnel in inhibition. We substituted 5-9 residues of the L-site with alanine to investigate whether the binding of a second inhibitor molecule to the L-site is required for inhibiting drug efflux. We reveal, for the first time, that mutations in the L-site affect the drug efflux activity of P-gp, despite their distance from the substrate-binding pocket (SBP). Surprisingly, after the mutations were introduced, inhibitors such as tariquidar and zosuquidar still inhibited drug efflux by mutant P-gps. Communication between the transmembrane helices (TMHs) and nucleotide-binding domains (NBDs) was evaluated using the ATPase assay, revealing distinct modulation patterns by inhibitors for the mutants, with zosuquidar exhibiting substrate-like stimulation of ATPase. Furthermore, L-site mutations abolished ATP-dependent thermal stabilization. In silico molecular docking studies corroborated the altered inhibitor binding due to mutations in the L-site residues, shedding light on their critical role in substrate transport and inhibitor interactions with P-gp. These findings suggest that inhibitors bind either to the SBP alone, and/or to alternate site(s) when the L-site is disabled by mutagenesis.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350596/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clustering protein functional families at large scale with hierarchical approaches. 用分层方法对蛋白质功能家族进行大规模聚类。
IF 4.5 3区 生物学
Protein Science Pub Date : 2024-09-01 DOI: 10.1002/pro.5140
Nicola Bordin, Harry Scholes, Clemens Rauer, Joel Roca-Martínez, Ian Sillitoe, Christine Orengo
{"title":"Clustering protein functional families at large scale with hierarchical approaches.","authors":"Nicola Bordin, Harry Scholes, Clemens Rauer, Joel Roca-Martínez, Ian Sillitoe, Christine Orengo","doi":"10.1002/pro.5140","DOIUrl":"10.1002/pro.5140","url":null,"abstract":"<p><p>Proteins, fundamental to cellular activities, reveal their function and evolution through their structure and sequence. CATH functional families (FunFams) are coherent clusters of protein domain sequences in which the function is conserved across their members. The increasing volume and complexity of protein data enabled by large-scale repositories like MGnify or AlphaFold Database requires more powerful approaches that can scale to the size of these new resources. In this work, we introduce MARC and FRAN, two algorithms developed to build upon and address limitations of GeMMA/FunFHMMER, our original methods developed to classify proteins with related functions using a hierarchical approach. We also present CATH-eMMA, which uses embeddings or Foldseek distances to form relationship trees from distance matrices, reducing computational demands and handling various data types effectively. CATH-eMMA offers a highly robust and much faster tool for clustering protein functions on a large scale, providing a new tool for future studies in protein function and evolution.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zika virus capsid protein closed structure modulates binding to host lipid systems. 寨卡病毒帽状蛋白封闭结构调节与宿主脂质系统的结合。
IF 4.5 3区 生物学
Protein Science Pub Date : 2024-09-01 DOI: 10.1002/pro.5142
Ana S Martins, Filomena A Carvalho, André R Nascimento, Nelly M Silva, Teresa V Rebelo, André F Faustino, Francisco J Enguita, Roland G Huber, Nuno C Santos, Ivo C Martins
{"title":"Zika virus capsid protein closed structure modulates binding to host lipid systems.","authors":"Ana S Martins, Filomena A Carvalho, André R Nascimento, Nelly M Silva, Teresa V Rebelo, André F Faustino, Francisco J Enguita, Roland G Huber, Nuno C Santos, Ivo C Martins","doi":"10.1002/pro.5142","DOIUrl":"10.1002/pro.5142","url":null,"abstract":"<p><p>Zika virus (ZIKV), a mosquito-borne Flavivirus of international concern, causes congenital microcephaly in newborns and Guillain-Barré syndrome in adults. ZIKV capsid (C) protein, one of three key structural proteins, is essential for viral assembly and encapsidation. In dengue virus, a closely related flavivirus, the homologous C protein interacts with host lipid systems, namely intracellular lipid droplets, for successful viral replication. Here, we investigate ZIKV C interaction with host lipid systems, showing that it binds host lipid droplets but, contrary to expected, in an unspecific manner. Contrasting with other flaviviruses, ZIKV C also does not bind very-low density-lipoproteins. Comparing with other Flavivirus, capsid proteins show that ZIKV C structure is particularly thermostable and seems to be locked into an auto-inhibitory conformation due to a disordered N-terminal, hence blocking specific interactions and supporting the experimental differences observed. Such distinct structural features must be considered when targeting capsid proteins in drug development.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring protein functions from structural flexibility using CABS-flex modeling. 利用 CABS-flex 建模从结构灵活性中探索蛋白质功能。
IF 4.5 3区 生物学
Protein Science Pub Date : 2024-09-01 DOI: 10.1002/pro.5090
Chandran Nithin, Rocco Peter Fornari, Smita P Pilla, Karol Wroblewski, Mateusz Zalewski, Rafał Madaj, Andrzej Kolinski, Joanna M Macnar, Sebastian Kmiecik
{"title":"Exploring protein functions from structural flexibility using CABS-flex modeling.","authors":"Chandran Nithin, Rocco Peter Fornari, Smita P Pilla, Karol Wroblewski, Mateusz Zalewski, Rafał Madaj, Andrzej Kolinski, Joanna M Macnar, Sebastian Kmiecik","doi":"10.1002/pro.5090","DOIUrl":"10.1002/pro.5090","url":null,"abstract":"<p><p>Understanding protein function often necessitates characterizing the flexibility of protein structures. However, simulating protein flexibility poses significant challenges due to the complex dynamics of protein systems, requiring extensive computational resources and accurate modeling techniques. In response to these challenges, the CABS-flex method has been developed as an efficient modeling tool that combines coarse-grained simulations with all-atom detail. Available both as a web server and a standalone package, CABS-flex is dedicated to a wide range of users. The web server version offers an accessible interface for straightforward tasks, while the standalone command-line program is designed for advanced users, providing additional features, analytical tools, and support for handling large systems. This paper examines the application of CABS-flex across various structure-function studies, facilitating investigations into the interplay among protein structure, dynamics, and function in diverse research fields. We present an overview of the current status of the CABS-flex methodology, highlighting its recent advancements, practical applications, and forthcoming challenges.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350595/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Red/green cyanobacteriochromes acquire isomerization from phycocyanobilin to phycoviolobilin. 红/绿蓝藻色素从藻氰基生物素异构为藻氰基生物素。
IF 4.5 3区 生物学
Protein Science Pub Date : 2024-08-01 DOI: 10.1002/pro.5132
Hiroki Hoshino, Keita Miyake, Keiji Fushimi, Rei Narikawa
{"title":"Red/green cyanobacteriochromes acquire isomerization from phycocyanobilin to phycoviolobilin.","authors":"Hiroki Hoshino, Keita Miyake, Keiji Fushimi, Rei Narikawa","doi":"10.1002/pro.5132","DOIUrl":"10.1002/pro.5132","url":null,"abstract":"<p><p>Cyanobacteriochromes (CBCRs) are unique cyanobacteria-specific photoreceptors that share a distant relation with phytochromes. Most CBCRs contain conserved cysteine residues known as canonical Cys, while some CBCRs have additional cysteine residues called second Cys within the DXCF motif, leading to their classification as DXCF CBCRs. They typically undergo a process where they incorporate phycocyanobilin (PCB) and subsequently isomerize it to phycoviolobilin (PVB). Conversely, CBCRs with conserved Trp residues and without the second Cys are called extended red/green (XRG) CBCRs. Typical XRG CBCRs bind PCB without undergoing PCB-to-PVB isomerization, displaying red/green reversible photoconversion, and there are also atypical CBCRs that exhibit diverse photoconversions. We discovered novel XRG CBCRs with Cys residue instead of the conserved Trp residue. These novel XRG CBCRs exhibited the ability to isomerize PCB to PVB, displaying green/teal reversible photoconversion. Through sequence- and structure-based comparisons coupled with mutagenesis experiments, we identified three amino acid residues, including the Cys residue, crucial for facilitating PCB-to-PVB isomerization. This research expands our understanding of the diversity of XRG CBCRs, highlighting the remarkable molecular plasticity of CBCRs.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284453/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable and reusable calcium-responsive biopolymer for affinity precipitation of therapeutic antibodies. 用于治疗性抗体亲和沉淀的稳定且可重复使用的钙响应生物聚合物。
IF 4.5 3区 生物学
Protein Science Pub Date : 2024-08-01 DOI: 10.1002/pro.5066
Heesun Park, Jeong-Seok Oh, Jonghwan Lee, Jinho Bang, Keunwan Park, Suhyeon Jeong, Seho Park, Jae-Sung Woo, Sunghyun Kim
{"title":"Stable and reusable calcium-responsive biopolymer for affinity precipitation of therapeutic antibodies.","authors":"Heesun Park, Jeong-Seok Oh, Jonghwan Lee, Jinho Bang, Keunwan Park, Suhyeon Jeong, Seho Park, Jae-Sung Woo, Sunghyun Kim","doi":"10.1002/pro.5066","DOIUrl":"10.1002/pro.5066","url":null,"abstract":"<p><p>Affinity precipitation is an attractive method for protein purification due to its many advantages, including the rapid capture of target proteins, simple processing, high specificity, and ease of scale-up. We previously reported a robust antibody purification method using Ca<sup>2+</sup>-dependent precipitation of ZZ-hCSQ2, a fusion protein of human calsequestrin 2, and the antibody-binding protein ZZ. However, the stability of this fusion protein was not sufficiently high for industrial use because the antibody recovery yield decreased to 60% after being reused 10 times. To identify a more stable calsequestrin (CSQ), we calculated Rosetta energy values for the folding stabilities of various CSQ homologs and selected human CSQ1 (hCSQ1) with lowest energy value (-992.6) as the new CSQ platform. We also identified that the linker sequence between ZZ and CSQ was vulnerable to proteases and alkaline pH by N-terminal protein sequencing. Therefore, we changed the linker to four asparagine (4N) sequences, which were shorter and less flexible than the previous glycine-rich linker. The new version of ZZ-CSQ, ZZ-4N-hCSQ1, was stable in a protease-containing conditioned medium obtained from the cultured Chinese hamster ovary cell or high pH condition (0.1M sodium hydroxide) for more than 5 days and could be reused at least 25 times for antibody purification without loss of recovery yield. The antibodies purified by ZZ-4N-hCSQ1 precipitation also showed greater purity (~33.6-fold lower host cell DNA and ~6.4-fold lower host cell protein) than those purified by protein A chromatography. These data suggest that ZZ-4N-hCSQ1 precipitation is more efficient and can achieve cost-effectiveness of up to 12.5-fold cheaper than previous antibody purification methods and can lower the production costs of therapeutic antibodies.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285868/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure-based design of a Plasmodium vivax Duffy-binding protein immunogen focuses the antibody response to functional epitopes. 基于结构设计的间日疟原虫达菲结合蛋白免疫原可将抗体反应集中于功能表位。
IF 4.5 3区 生物学
Protein Science Pub Date : 2024-08-01 DOI: 10.1002/pro.5095
Thayne H Dickey, Holly McAleese, Nichole D Salinas, Lynn E Lambert, Niraj H Tolia
{"title":"Structure-based design of a Plasmodium vivax Duffy-binding protein immunogen focuses the antibody response to functional epitopes.","authors":"Thayne H Dickey, Holly McAleese, Nichole D Salinas, Lynn E Lambert, Niraj H Tolia","doi":"10.1002/pro.5095","DOIUrl":"10.1002/pro.5095","url":null,"abstract":"<p><p>The Duffy-binding protein (DBP) is a promising antigen for a malaria vaccine that would protect against clinical symptoms caused by Plasmodium vivax infection. Region II of DBP (DBP-II) contains the receptor-binding domain that engages host red blood cells, but DBP-II vaccines elicit many non-neutralizing antibodies that bind distal to the receptor-binding surface. Here, we engineered a truncated DBP-II immunogen that focuses the immune response to the receptor-binding surface. This immunogen contains the receptor-binding subdomain S1S2 and lacks the immunodominant subdomain S3. Structure-based computational design of S1S2 identified combinatorial amino acid changes that stabilized the isolated S1S2 without perturbing neutralizing epitopes. This immunogen elicited DBP-II-specific antibodies in immunized mice that were significantly enriched for blocking activity compared to the native DBP-II antigen. This generalizable design process successfully stabilized an integral core fragment of a protein and focused the immune response to desired epitopes to create a promising new antigen for malaria vaccine development.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237555/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EFG-CS: Predicting chemical shifts from amino acid sequences with protein structure prediction using machine learning and deep learning models. EFG-CS:利用机器学习和深度学习模型从氨基酸序列预测化学位移与蛋白质结构预测。
IF 4.5 3区 生物学
Protein Science Pub Date : 2024-08-01 DOI: 10.1002/pro.5096
Xiaotong Gu, Yoochan Myung, Carlos H M Rodrigues, David B Ascher
{"title":"EFG-CS: Predicting chemical shifts from amino acid sequences with protein structure prediction using machine learning and deep learning models.","authors":"Xiaotong Gu, Yoochan Myung, Carlos H M Rodrigues, David B Ascher","doi":"10.1002/pro.5096","DOIUrl":"10.1002/pro.5096","url":null,"abstract":"<p><p>Nuclear magnetic resonance (NMR) crystallography is one of the main methods in structural biology for analyzing protein stereochemistry and structure. The chemical shift of the resonance frequency reflects the effect of the protons in a molecule producing distinct NMR signals in different chemical environments. Apprehending chemical shifts from NMR signals can be challenging since having an NMR structure does not necessarily provide all the required chemical shift information, making predictive models essential for accurately deducing chemical shifts, either from protein structures or, more ideally, directly from amino acid sequences. Here, we present EFG-CS, a web server that specializes in chemical shift prediction. EFG-CS employs a machine learning-based transfer prediction model for backbone atom chemical shift prediction, using ESMFold-predicted protein structures. Additionally, ESG-CS incorporates a graph neural network-based model to provide comprehensive side-chain atom chemical shift predictions. Our method demonstrated reliable performance in backbone atom prediction, achieving comparable accuracy levels with root mean square errors (RMSE) of 0.30 ppm for H, 0.22 ppm for Hα, 0.89 ppm for C, 0.89 ppm for Cα, 0.84 ppm for Cβ, and 1.69 ppm for N. Moreover, our approach also showed predictive capabilities in side-chain atom chemical shift prediction achieving RMSE values of 0.71 ppm for Hβ, 0.74-1.15 ppm for Hδ, and 0.58-0.94 ppm for Hγ, solely utilizing amino acid sequences without homology or feature curation. This work shows for the first time that generative AI protein models can predict NMR shifts nearly comparable to experimental models. This web server is freely available at https://biosig.lab.uq.edu.au/efg_cs, and the chemical shift prediction results can be downloaded in tabular format and visualized in 3D format.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MRS2 missense variation at Asp216 abrogates inhibitory Mg2+ binding, potentiating cell migration and apoptosis resistance. MRS2在Asp216处的错义变异削弱了Mg2+的抑制性结合,从而增强了细胞迁移和抗凋亡能力。
IF 4.5 3区 生物学
Protein Science Pub Date : 2024-08-01 DOI: 10.1002/pro.5108
Sukanthathulse Uthayabalan, Taylor Lake, Peter B Stathopulos
{"title":"MRS2 missense variation at Asp216 abrogates inhibitory Mg<sup>2+</sup> binding, potentiating cell migration and apoptosis resistance.","authors":"Sukanthathulse Uthayabalan, Taylor Lake, Peter B Stathopulos","doi":"10.1002/pro.5108","DOIUrl":"10.1002/pro.5108","url":null,"abstract":"<p><p>Mitochondrial magnesium (Mg<sup>2+</sup>) is a crucial modulator of protein stability, enzymatic activity, ATP synthesis, and cell death. Mitochondrial RNA splicing protein 2 (MRS2) is the main Mg<sup>2+</sup> channel in the inner mitochondrial membrane that mediates influx into the matrix. Recent cryo-electron microscopy (cryo-EM) human MRS2 structures exhibit minimal conformational changes at high and low Mg<sup>2+</sup>, yet the regulation of human MRS2 and orthologues by Mg<sup>2+</sup> binding to analogous matrix domains has been well established. Further, a missense variation at D216 has been identified associated with malignant melanoma and MRS2 expression and activity is implicated in gastric cancer. Thus, to gain more mechanistic and functional insight into Mg<sup>2+</sup> sensing by the human MRS2 matrix domain and the association with proliferative disease, we assessed the structural, biophysical, and functional effects of a D216Q mutant. We show that the D216Q mutation is sufficient to abrogate Mg<sup>2+</sup>-binding and associated conformational changes including increased α-helicity, stability, and monomerization. Further, we reveal that the MRS2 matrix domains interact with ~μM affinity, which is weakened by up to two orders of magnitude in the presence of Mg<sup>2+</sup> for wild-type but unaffected for D216Q. Finally, we demonstrate the importance of Mg<sup>2+</sup> sensing by MRS2 to prevent matrix Mg<sup>2+</sup> overload as HeLa cells overexpressing MRS2 show enhanced Mg<sup>2+</sup> uptake, cell migration, and resistance to apoptosis while MRS2 D216Q robustly potentiates these cancer phenotypes. Collectively, our findings further define the MRS2 matrix domain as a critical Mg<sup>2+</sup> sensor that undergoes conformational and assembly changes upon Mg<sup>2+</sup> interactions dependent on D216 to temper matrix Mg<sup>2+</sup> overload.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237551/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MTR3D-AF2: Expanding the coverage of spatially derived missense tolerance scores across the human proteome using AlphaFold2. MTR3D-AF2:使用 AlphaFold2 在人类蛋白质组中扩大空间推导的错义容忍度分数的覆盖范围。
IF 4.5 3区 生物学
Protein Science Pub Date : 2024-08-01 DOI: 10.1002/pro.5112
Aaron S Kovacs, Stephanie Portelli, Michael Silk, Carlos H M Rodrigues, David B Ascher
{"title":"MTR3D-AF2: Expanding the coverage of spatially derived missense tolerance scores across the human proteome using AlphaFold2.","authors":"Aaron S Kovacs, Stephanie Portelli, Michael Silk, Carlos H M Rodrigues, David B Ascher","doi":"10.1002/pro.5112","DOIUrl":"10.1002/pro.5112","url":null,"abstract":"<p><p>The missense tolerance ratio (MTR) was developed as a novel approach to assess the deleteriousness of variants. Its three-dimensional successor, MTR3D, was demonstrated powerful at discriminating pathogenic from benign variants. However, its reliance on experimental structures and homologs limited its coverage of the proteome. We have now utilized AlphaFold2 models to develop MTR3D-AF2, which covers 89.31% of proteins and 85.39% of residues across the human proteome. This work has improved MTR3D's ability to distinguish clinically established pathogenic from benign variants. MTR3D-AF2 is freely available as an interactive web server at https://biosig.lab.uq.edu.au/mtr3daf2/.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258768/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信