Marie M Grandjean, Jean-Pierre Duneau, Edwige B Garcin, Laetitia Houot, Olivier Bornet, Christophe Bordi, Latifa Elantak, Corinne Sebban-Kreuzer
{"title":"Two cysteines control Tse1 secretion by H1-T6SS in Pseudomonas aeruginosa.","authors":"Marie M Grandjean, Jean-Pierre Duneau, Edwige B Garcin, Laetitia Houot, Olivier Bornet, Christophe Bordi, Latifa Elantak, Corinne Sebban-Kreuzer","doi":"10.1002/pro.70226","DOIUrl":null,"url":null,"abstract":"<p><p>Type Six Secretion Systems (T6SS) are molecular machines that export toxic effector proteins into bacterial competitors or eukaryotic cells. Pseudomonas aeruginosa's H1-T6SS secretes Tse1, which contains a disulfide bond between cysteines at positions 7 and 148, linking its N- and C-terminal regions. The role of this disulfide bond in Tse1 activity and mechanism of action during bacterial competition is unknown. In this study, we investigated the role of the C7-C148 disulfide bond within Tse1. First, NMR spectroscopy experiments suggest a redox-active instead of a structural disulfide bond. Moreover, while the presence of this bond did not alter Tse1's amidase activity or toxicity in Escherichia coli, substituting cysteines C7 or C148 in P. aeruginosa strains affected the bacterium's capacity to lyse prey cells. Secretome analysis showed that the Tse1C148S variant was not secreted via the H1-T6SS, whereas the Tse1C7S variant was secreted. These findings suggest that cysteine 148 is likely important for Tse1's assembly with the T6SS machinery, while cysteine 7 appears to be involved in its disassembly, potentially through the formation of the disulfide bond. This study points to a potential redox regulation mechanism during the assembly and disassembly of Tse1 with Hcp1, consistent with a \"bridge of delivery\" model.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 8","pages":"e70226"},"PeriodicalIF":5.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302283/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70226","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Type Six Secretion Systems (T6SS) are molecular machines that export toxic effector proteins into bacterial competitors or eukaryotic cells. Pseudomonas aeruginosa's H1-T6SS secretes Tse1, which contains a disulfide bond between cysteines at positions 7 and 148, linking its N- and C-terminal regions. The role of this disulfide bond in Tse1 activity and mechanism of action during bacterial competition is unknown. In this study, we investigated the role of the C7-C148 disulfide bond within Tse1. First, NMR spectroscopy experiments suggest a redox-active instead of a structural disulfide bond. Moreover, while the presence of this bond did not alter Tse1's amidase activity or toxicity in Escherichia coli, substituting cysteines C7 or C148 in P. aeruginosa strains affected the bacterium's capacity to lyse prey cells. Secretome analysis showed that the Tse1C148S variant was not secreted via the H1-T6SS, whereas the Tse1C7S variant was secreted. These findings suggest that cysteine 148 is likely important for Tse1's assembly with the T6SS machinery, while cysteine 7 appears to be involved in its disassembly, potentially through the formation of the disulfide bond. This study points to a potential redox regulation mechanism during the assembly and disassembly of Tse1 with Hcp1, consistent with a "bridge of delivery" model.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).