Libor Hejduk, Norbert Müller, Adriana Rathner, Ján Štěrba, Shang-Cheng Hung, Chia-Lin Chyan, Ryan O M Rego, Martin Strnad
{"title":"Navigating infection by pathogenic spirochetes: The host-bacteria interface at the atomic level.","authors":"Libor Hejduk, Norbert Müller, Adriana Rathner, Ján Štěrba, Shang-Cheng Hung, Chia-Lin Chyan, Ryan O M Rego, Martin Strnad","doi":"10.1002/pro.70185","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenic spirochetes bind and interact with various host structures and molecules throughout the course of infection. By utilizing their outer surface molecules, spirochetes can effectively modulate their dissemination, interact with immune system regulators, and select specific destination niches within the host. The three-dimensional structures of multiple spirochetal surface proteins have been elucidated, providing insight into their modus operandi. This review focuses on the structural characteristics of these sticky molecules and their functional implications, highlighting how these features contribute to the pathogenicity of spirochetes and their ability to persist in the host and vector environments. Recognizing the structural motifs and ligands to which these important virulence determinants bind could open new avenues for developing strategies to block colonization by spirochetal pathogens.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 7","pages":"e70185"},"PeriodicalIF":5.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183334/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70185","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pathogenic spirochetes bind and interact with various host structures and molecules throughout the course of infection. By utilizing their outer surface molecules, spirochetes can effectively modulate their dissemination, interact with immune system regulators, and select specific destination niches within the host. The three-dimensional structures of multiple spirochetal surface proteins have been elucidated, providing insight into their modus operandi. This review focuses on the structural characteristics of these sticky molecules and their functional implications, highlighting how these features contribute to the pathogenicity of spirochetes and their ability to persist in the host and vector environments. Recognizing the structural motifs and ligands to which these important virulence determinants bind could open new avenues for developing strategies to block colonization by spirochetal pathogens.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).