ExploreTurns: A web tool for the exploration, analysis, and classification of beta turns and structured loops in proteins; application to beta-bulge and Schellman loops, Asx helix caps, beta hairpins, and other hydrogen-bonded motifs.
{"title":"ExploreTurns: A web tool for the exploration, analysis, and classification of beta turns and structured loops in proteins; application to beta-bulge and Schellman loops, Asx helix caps, beta hairpins, and other hydrogen-bonded motifs.","authors":"Nicholas E Newell","doi":"10.1002/pro.70046","DOIUrl":null,"url":null,"abstract":"<p><p>The most common type of protein secondary structure after the alpha helix and beta sheet is the four-residue beta turn, which plays many key structural and functional roles. Existing tools for the study of beta turns operate in backbone dihedral-angle (Ramachandran) space, which presents challenges for the visualization, comparison and analysis of the wide range of turn conformations. In this work, a new turn-local coordinate system and structural alignment, together with a set of geometric descriptors for turn backbone shape, are incorporated into ExploreTurns, a web facility for the exploration, analysis, geometric tuning and retrieval of beta turns and their contexts which combines the advantages of Ramachandran- and Euclidean-space representations. Due to the prevalence of beta turns in proteins, this facility, supported by its interpreter for a new general nomenclature which classifies H-bonded loop motifs and beta hairpins, serves as an exploratory browser and analysis tool for most loop structure. The tool is applied to the detection of new H-bonded loops, including short and \"double\" Schellman loops, a large family of beta-bulge loops with a range of geometries and H-bond topologies, and other motifs. Other applications presented here include the mapping of sequence preferences in Asx helix N-caps and an investigation of the depth dependence of beta-turn geometry. ExploreTurns, available at www.betaturn.com, should prove useful in research, education, and applications such as protein design, in which an enhanced Euclidean-space picture of turn and motif structure and the ability to identify and tune structures suited to particular requirements may improve performance.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 3","pages":"e70046"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836897/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70046","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The most common type of protein secondary structure after the alpha helix and beta sheet is the four-residue beta turn, which plays many key structural and functional roles. Existing tools for the study of beta turns operate in backbone dihedral-angle (Ramachandran) space, which presents challenges for the visualization, comparison and analysis of the wide range of turn conformations. In this work, a new turn-local coordinate system and structural alignment, together with a set of geometric descriptors for turn backbone shape, are incorporated into ExploreTurns, a web facility for the exploration, analysis, geometric tuning and retrieval of beta turns and their contexts which combines the advantages of Ramachandran- and Euclidean-space representations. Due to the prevalence of beta turns in proteins, this facility, supported by its interpreter for a new general nomenclature which classifies H-bonded loop motifs and beta hairpins, serves as an exploratory browser and analysis tool for most loop structure. The tool is applied to the detection of new H-bonded loops, including short and "double" Schellman loops, a large family of beta-bulge loops with a range of geometries and H-bond topologies, and other motifs. Other applications presented here include the mapping of sequence preferences in Asx helix N-caps and an investigation of the depth dependence of beta-turn geometry. ExploreTurns, available at www.betaturn.com, should prove useful in research, education, and applications such as protein design, in which an enhanced Euclidean-space picture of turn and motif structure and the ability to identify and tune structures suited to particular requirements may improve performance.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).