Nitro-fatty acids-mediated nitroalkylation modulates fine-tuning catalase antioxidant function during salinity stress in plants.

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Protein Science Pub Date : 2025-03-01 DOI:10.1002/pro.70076
Mounira Chaki, Lorena Aranda-Caño, Juan C Begara-Morales, Beatriz Sánchez-Calvo, Francisco Javier López-Jaramillo, María N Padilla, Raquel Valderrama, José Rafael Pedrajas, Juan B Barroso
{"title":"Nitro-fatty acids-mediated nitroalkylation modulates fine-tuning catalase antioxidant function during salinity stress in plants.","authors":"Mounira Chaki, Lorena Aranda-Caño, Juan C Begara-Morales, Beatriz Sánchez-Calvo, Francisco Javier López-Jaramillo, María N Padilla, Raquel Valderrama, José Rafael Pedrajas, Juan B Barroso","doi":"10.1002/pro.70076","DOIUrl":null,"url":null,"abstract":"<p><p>Nitro-fatty acids (NO<sub>2</sub>-FAs) are novel molecules resulting from the interaction of unsaturated fatty acids and nitric oxide (NO) or NO-related molecules. In plants, it has recently been described that NO<sub>2</sub>-FAs trigger a powerful antioxidant and defense response against stressful situations, the induction of the heat-shock response (HSR), and they exert their signaling function mainly through a reversible post-translational modification called nitroalkylation. Catalase (CAT) is a key antioxidant enzyme for the control of the hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) levels generated by environmental oxidative stress. The data presented in this study provide novel information on the role of NO<sub>2</sub>-FAs in modulating the antioxidant activity of catalase 2 (CAT2) during salinity stress in Arabidopsis thaliana. Initially, in vitro treatment with nitro-linolenic acid (NO<sub>2</sub>-Ln) down-regulated Arabidopsis CAT2 activity, as a consequence of the nitroalkylation of His 156 and His 248, evolutionarily conserved residues with key functional implications for the quaternary structure and hence CAT2 activity. Any effect of NO<sub>2</sub>-Ln on the heme group or S-nitrosylation of CAT2 was excluded. To further our knowledge of the regulatory mechanism of this antioxidant enzyme by nitroalkylation, the functional modulation of CAT by NO<sub>2</sub>-FAs was analyzed in 5-day-old Arabidopsis cell suspension cultures subjected to salinity stress. In this situation, the oxidative stress generated caused the nitroalkylation of these residues to disappear through the cleavage of NO<sub>2</sub>-Ln binding to CAT2, thus restoring CAT2 catalytic activity. Thus, during salinity stress, CAT2 enzymatic activity increased without changes in protein levels. These results highlight the amino acid targets that are susceptible to nitroalkylation and the modulatory effect of this post-translational modification on CAT2 enzymatic activity in vitro and in vivo. These findings underline the regulatory role of nitroalkylation in CAT2 functionality, which is strongly influenced by the redox state thus becoming a new key control mechanism of this antioxidant enzyme in abiotic stress cell response processes.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 3","pages":"e70076"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11862108/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70076","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nitro-fatty acids (NO2-FAs) are novel molecules resulting from the interaction of unsaturated fatty acids and nitric oxide (NO) or NO-related molecules. In plants, it has recently been described that NO2-FAs trigger a powerful antioxidant and defense response against stressful situations, the induction of the heat-shock response (HSR), and they exert their signaling function mainly through a reversible post-translational modification called nitroalkylation. Catalase (CAT) is a key antioxidant enzyme for the control of the hydrogen peroxide (H2O2) levels generated by environmental oxidative stress. The data presented in this study provide novel information on the role of NO2-FAs in modulating the antioxidant activity of catalase 2 (CAT2) during salinity stress in Arabidopsis thaliana. Initially, in vitro treatment with nitro-linolenic acid (NO2-Ln) down-regulated Arabidopsis CAT2 activity, as a consequence of the nitroalkylation of His 156 and His 248, evolutionarily conserved residues with key functional implications for the quaternary structure and hence CAT2 activity. Any effect of NO2-Ln on the heme group or S-nitrosylation of CAT2 was excluded. To further our knowledge of the regulatory mechanism of this antioxidant enzyme by nitroalkylation, the functional modulation of CAT by NO2-FAs was analyzed in 5-day-old Arabidopsis cell suspension cultures subjected to salinity stress. In this situation, the oxidative stress generated caused the nitroalkylation of these residues to disappear through the cleavage of NO2-Ln binding to CAT2, thus restoring CAT2 catalytic activity. Thus, during salinity stress, CAT2 enzymatic activity increased without changes in protein levels. These results highlight the amino acid targets that are susceptible to nitroalkylation and the modulatory effect of this post-translational modification on CAT2 enzymatic activity in vitro and in vivo. These findings underline the regulatory role of nitroalkylation in CAT2 functionality, which is strongly influenced by the redox state thus becoming a new key control mechanism of this antioxidant enzyme in abiotic stress cell response processes.

盐胁迫下植物硝基脂肪酸介导的硝基烷基化调控过氧化氢酶的抗氧化功能。
硝基脂肪酸(NO2-FAs)是由不饱和脂肪酸与一氧化氮(NO)或NO相关分子相互作用产生的新型分子。在植物中,最近有研究表明,NO2-FAs可触发强大的抗氧化和防御反应,诱导热休克反应(HSR),并且它们主要通过可逆的翻译后修饰(称为硝基烷基化)发挥其信号功能。过氧化氢酶(CAT)是控制环境氧化应激产生的过氧化氢(H2O2)水平的关键抗氧化酶。本研究提供了盐胁迫下NO2-FAs调控拟南芥过氧化氢酶2 (CAT2)抗氧化活性的新信息。最初,硝基亚麻酸(NO2-Ln)体外处理下调拟南芥CAT2活性,这是由于His 156和His 248的硝基烷基化,这两个进化上保守的残基对其四级结构和CAT2活性具有关键的功能影响。排除NO2-Ln对CAT2血红素基团或s -亚硝基化的任何影响。为了进一步了解这种抗氧化酶通过硝基烷基化的调控机制,我们在盐度胁迫下的5日龄拟南芥细胞悬浮培养中分析了NO2-FAs对CAT的功能调节。在这种情况下,产生的氧化应激使这些残基的硝基烷基化通过NO2-Ln与CAT2结合的裂解而消失,从而恢复了CAT2的催化活性。因此,在盐度胁迫下,CAT2酶活性增加而蛋白质水平没有变化。这些结果突出了易受硝基烷基化影响的氨基酸靶点,以及这种翻译后修饰对体内和体外CAT2酶活性的调节作用。这些发现强调了硝基烷基化在CAT2功能中的调节作用,而CAT2功能受氧化还原状态的强烈影响,从而成为该抗氧化酶在非生物应激细胞反应过程中的一个新的关键控制机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信