Impact of local unfolding fluctuations on the evolution of regional sequence preferences in proteins.

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Protein Science Pub Date : 2025-03-01 DOI:10.1002/pro.70015
Keila Voortman-Sheetz, James O Wrabl, Vincent J Hilser
{"title":"Impact of local unfolding fluctuations on the evolution of regional sequence preferences in proteins.","authors":"Keila Voortman-Sheetz, James O Wrabl, Vincent J Hilser","doi":"10.1002/pro.70015","DOIUrl":null,"url":null,"abstract":"<p><p>The number of distinct structural environments in the proteome (as observed in the Protein Data Bank) may belie an organizing framework, whereby evolution conserves the relative stability of different sequence segments, regardless of the specific structural details present in the final fold. If true, the question arises as to whether the energetic consequences of amino acid substitutions, and thus the frequencies of amino acids within each of these so-called thermodynamic environments, could depend less on what local structure that sequence segment may adopt in the final fold, and more on the local stability of that final structure relative to the unfolded state. To address this question, a previously described ensemble-based approach (the COREX algorithm) was used to define proteins in terms of thermodynamic environments, and the naturally occurring frequencies of amino acids within these environments were used to generate statistical energies (a type of knowledge-based potential). By comparing compatibility scores from the statistical energies with energies calculated using the Rosetta all-atom energy function, we assessed the information overlap between the two approaches. Results revealed a substantial correlation between the statistical scores and those obtained using Rosetta, directly demonstrating that a small number of thermodynamic environments are sufficient to capture the perceived multiplicity of different structural environments in proteins. More importantly, the agreement suggests that regional amino acid distributions within each protein in any proteome have been substantially driven by the evolutionary conservation of the regional differences in stabilities within protein families.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 3","pages":"e70015"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837041/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70015","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The number of distinct structural environments in the proteome (as observed in the Protein Data Bank) may belie an organizing framework, whereby evolution conserves the relative stability of different sequence segments, regardless of the specific structural details present in the final fold. If true, the question arises as to whether the energetic consequences of amino acid substitutions, and thus the frequencies of amino acids within each of these so-called thermodynamic environments, could depend less on what local structure that sequence segment may adopt in the final fold, and more on the local stability of that final structure relative to the unfolded state. To address this question, a previously described ensemble-based approach (the COREX algorithm) was used to define proteins in terms of thermodynamic environments, and the naturally occurring frequencies of amino acids within these environments were used to generate statistical energies (a type of knowledge-based potential). By comparing compatibility scores from the statistical energies with energies calculated using the Rosetta all-atom energy function, we assessed the information overlap between the two approaches. Results revealed a substantial correlation between the statistical scores and those obtained using Rosetta, directly demonstrating that a small number of thermodynamic environments are sufficient to capture the perceived multiplicity of different structural environments in proteins. More importantly, the agreement suggests that regional amino acid distributions within each protein in any proteome have been substantially driven by the evolutionary conservation of the regional differences in stabilities within protein families.

局部展开波动对蛋白质区域序列偏好进化的影响。
蛋白质组中不同结构环境的数量(如在蛋白质数据库中观察到的)可能相信一个组织框架,即进化保存了不同序列片段的相对稳定性,而不管最终折叠中存在的特定结构细节。如果这是真的,那么问题就来了,氨基酸取代的能量后果,以及氨基酸在这些所谓的热力学环境中的频率,是否更少地依赖于序列片段在最终折叠中可能采用的局部结构,而更多地依赖于最终结构相对于展开状态的局部稳定性。为了解决这个问题,使用了先前描述的基于集成的方法(COREX算法)来根据热力学环境定义蛋白质,并使用这些环境中氨基酸的自然发生频率来产生统计能量(一种基于知识的势能)。通过比较统计能量的相容性分数与使用Rosetta全原子能量函数计算的能量,我们评估了两种方法之间的信息重叠。结果显示统计分数与使用Rosetta获得的结果之间存在实质性的相关性,直接表明少量的热力学环境足以捕获蛋白质中不同结构环境的感知多样性。更重要的是,该协议表明,在任何蛋白质组中,每个蛋白质中的区域氨基酸分布在很大程度上是由蛋白质家族中稳定性区域差异的进化守恒所驱动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信