{"title":"Recent developments in materials and applications of triplet dynamic nuclear polarization","authors":"Tomoyuki Hamachi , Nobuhiro Yanai","doi":"10.1016/j.pnmrs.2024.05.001","DOIUrl":"10.1016/j.pnmrs.2024.05.001","url":null,"abstract":"<div><p>Dynamic nuclear polarization (DNP) is a method for achieving high levels of nuclear spin polarization by transferring spin polarization from electrons to nuclei by microwave irradiation, resulting in higher sensitivity in NMR/MRI. In particular, DNP using photoexcited triplet electron spins (triplet-DNP) can provide a hyperpolarized nuclear spin state at room temperature and in low magnetic field. In this review article, we highlight recent developments in materials and instrumentation for the application of triplet-DNP. First, a brief history and principles of triplet-DNP will be presented. Next, important advances in recent years will be outlined: new materials to hyperpolarize water and biomolecules; high-sensitivity solution NMR by dissolution triplet-DNP; and strategies for further improvement of the polarization. In view of these developments, future directions to widen the range of applications of triplet-DNP will be discussed.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"142 ","pages":"Pages 55-68"},"PeriodicalIF":6.1,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079656524000104/pdfft?md5=9ed36ffd4a1470748b9def3e318a6e28&pid=1-s2.0-S0079656524000104-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141033575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicole Leifer , Doron Aurbach , Steve G. Greenbaum
{"title":"NMR studies of lithium and sodium battery electrolytes","authors":"Nicole Leifer , Doron Aurbach , Steve G. Greenbaum","doi":"10.1016/j.pnmrs.2024.02.001","DOIUrl":"https://doi.org/10.1016/j.pnmrs.2024.02.001","url":null,"abstract":"<div><p>This review focuses on the application of nuclear magnetic resonance (NMR) spectroscopy in the study of lithium and sodium battery electrolytes. Lithium-ion batteries are widely used in electronic devices, electric vehicles, and renewable energy systems due to their high energy density, long cycle life, and low self-discharge rate. The sodium analog is still in the research phase, but has significant potential for future development. In both cases, the electrolyte plays a critical role in the performance and safety of these batteries. NMR spectroscopy provides a non-invasive and non-destructive method for investigating the structure, dynamics, and interactions of the electrolyte components, including the salts, solvents, and additives, at the molecular level. This work attempts to give a nearly comprehensive overview of the ways that NMR spectroscopy, both liquid and solid state, has been used in past and present studies of various electrolyte systems, including liquid, gel, and solid-state electrolytes, and highlights the insights gained from these studies into the fundamental mechanisms of ion transport, electrolyte stability, and electrode-electrolyte interfaces, including interphase formation and surface microstructure growth. Overviews of the NMR methods used and of the materials covered are presented in the first two chapters. The rest of the review is divided into chapters based on the types of electrolyte materials studied, and discusses representative examples of the types of insights that NMR can provide.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"142 ","pages":"Pages 1-54"},"PeriodicalIF":6.1,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139744477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Controlling NMR spin systems for quantum computation","authors":"Jonathan A. Jones","doi":"10.1016/j.pnmrs.2024.02.002","DOIUrl":"10.1016/j.pnmrs.2024.02.002","url":null,"abstract":"<div><p>Nuclear magnetic resonance is arguably both the best available quantum technology for implementing simple quantum computing experiments and the worst technology for building large scale quantum computers that has ever been seriously put forward. After a few years of rapid growth, leading to an implementation of Shor’s quantum factoring algorithm in a seven-spin system, the field started to reach its natural limits and further progress became challenging. Rather than pursuing more complex algorithms on larger systems, interest has now largely moved into developing techniques for the precise and efficient manipulation of spin states with the aim of developing methods that can be applied in other more scalable technologies and within conventional NMR. However, the user friendliness of NMR implementations means that they remain popular for proof-of-principle demonstrations of simple quantum information protocols.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"140 ","pages":"Pages 49-85"},"PeriodicalIF":6.1,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079656524000037/pdfft?md5=6984203993c485e5790fb1d345fac413&pid=1-s2.0-S0079656524000037-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139880258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Studying protein stability in crowded environments by NMR","authors":"Guohua Xu, Kai Cheng, Maili Liu, Conggang Li","doi":"10.1016/j.pnmrs.2024.01.001","DOIUrl":"https://doi.org/10.1016/j.pnmrs.2024.01.001","url":null,"abstract":"<div><p>Most proteins perform their functions in crowded and complex cellular environments where weak interactions are ubiquitous between biomolecules. These complex environments can modulate the protein folding energy landscape and hence affect protein stability. NMR is a nondestructive and effective method to quantify the kinetics and equilibrium thermodynamic stability of proteins at an atomic level within crowded environments and living cells. Here, we review NMR methods that can be used to measure protein stability, as well as findings of studies on protein stability in crowded environments mimicked by polymer and protein crowders and in living cells. The important effects of chemical interactions on protein stability are highlighted and compared to spatial excluded volume effects.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"140 ","pages":"Pages 42-48"},"PeriodicalIF":6.1,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139743770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingji Zheng , Yueying Chu , Qiang Wang , Yongxiang Wang , Jun Xu , Feng Deng
{"title":"Advanced solid-state NMR spectroscopy and its applications in zeolite chemistry","authors":"Mingji Zheng , Yueying Chu , Qiang Wang , Yongxiang Wang , Jun Xu , Feng Deng","doi":"10.1016/j.pnmrs.2023.11.001","DOIUrl":"10.1016/j.pnmrs.2023.11.001","url":null,"abstract":"<div><p>Solid-state NMR spectroscopy (ssNMR) can provide details about the structure, host–guest/guest–guest interactions and dynamic behavior of materials at atomic length scales. A crucial use of ssNMR is for the characterization of zeolite catalysts that are extensively employed in industrial catalytic processes. This review aims to spotlight the recent advancements in ssNMR spectroscopy and its application to zeolite chemistry. We first review the current ssNMR methods and techniques that are relevant to characterize zeolite catalysts, including advanced multinuclear and multidimensional experiments, <em>in situ</em> NMR techniques and hyperpolarization methods. Of these, the methodology development on half-integer quadrupolar nuclei is emphasized, which represent about two-thirds of stable NMR-active nuclei and are widely present in catalytic materials. Subsequently, we introduce the recent progress in understanding zeolite chemistry with the aid of these ssNMR methods and techniques, with a specific focus on the investigation of zeolite framework structures, zeolite crystallization mechanisms, surface active/acidic sites, host–guest/guest–guest interactions, and catalytic reaction mechanisms.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"140 ","pages":"Pages 1-41"},"PeriodicalIF":6.1,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079656523000237/pdfft?md5=30fe7d3a5de7e5c58cd892828ac7c957&pid=1-s2.0-S0079656523000237-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138437332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Micron-scale magnetic resonance imaging based on low temperatures and dynamic nuclear polarization","authors":"Robert Tycko","doi":"10.1016/j.pnmrs.2023.10.001","DOIUrl":"10.1016/j.pnmrs.2023.10.001","url":null,"abstract":"<div><p>Extension of magnetic resonance imaging (MRI) techniques to the single micron scale has been the goal of research in multiple laboratories over several decades. It has proven difficult to achieve isotropic spatial resolution better than 3.0 μm in inductively-detected MRI near 300 K, even with well-behaved test samples, microcoils, and optimized MRI pulse sequences. This article examines the factors that limit spatial resolution in MRI, especially the inherently low signal-to-noise ratio of nuclear magnetic resonance (NMR), and explains how these limiting factors can be overcome in principle, by acquiring MRI data at low temperatures and using dynamic nuclear polarization (DNP) to enhance signal amplitudes. Recent efforts directed at micron-scale MRI enabled by low-temperature DNP, culminating in images with 1.7 μm isotropic resolution obtained at 5 K, are reviewed. The article concludes with a discussion of areas in which further developments are likely to lead to further improvements in resolution, eventually to 1.0 μm or better.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"138 ","pages":"Pages 136-149"},"PeriodicalIF":6.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71514472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fingerprinting and profiling in metabolomics of biosamples","authors":"Veronica Ghini , Gaia Meoni , Alessia Vignoli , Francesca Di Cesare , Leonardo Tenori , Paola Turano , Claudio Luchinat","doi":"10.1016/j.pnmrs.2023.10.002","DOIUrl":"10.1016/j.pnmrs.2023.10.002","url":null,"abstract":"<div><p>This review focuses on metabolomics from an NMR point of view. It attempts to cover the broad scope of metabolomics and describes the NMR experiments that are most suitable for each sample type. It is addressed not only to NMR specialists, but to all researchers who wish to approach metabolomics with a clear idea of what they wish to achieve but not necessarily with a deep knowledge of NMR. For this reason, some technical parts may seem a bit naïve to the experts. The review starts by describing standard metabolomics procedures, which imply the use of a dedicated 600 MHz instrument and of four properly standardized 1D experiments. Standardization is a must if one wants to directly compare NMR results obtained in different labs. A brief mention is also made of standardized pre-analytical procedures, which are even more essential. Attention is paid to the distinction between fingerprinting and profiling, and the advantages and disadvantages of fingerprinting are clarified. This aspect is often not fully appreciated. Then profiling, and the associated problems of signal assignment and quantitation, are discussed. We also describe less conventional approaches, such as the use of different magnetic fields, the use of signal enhancement techniques to increase sensitivity, and the potential of field-shuttling NMR. A few examples of biomedical applications are also given, again with the focus on NMR techniques that are most suitable to achieve each particular goal, including a description of the most common heteronuclear experiments. Finally, the growing applications of metabolomics to foodstuffs are described.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"138 ","pages":"Pages 105-135"},"PeriodicalIF":6.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71506518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metal ions based dynamic nuclear polarization: MI-DNP","authors":"Daniel Jardón-Álvarez, Michal Leskes","doi":"10.1016/j.pnmrs.2023.08.002","DOIUrl":"10.1016/j.pnmrs.2023.08.002","url":null,"abstract":"<div><p>Over the last two decades magic angle spinning dynamic nuclear polarization (MAS DNP) has revolutionized NMR for materials characterization, tackling its main limitation of intrinsically low sensitivity. Progress in theoretical understanding, instrumentation, and sample formulation expanded the range of materials applications and research questions that can benefit from MAS DNP. Currently the most common approach for hyperpolarization under MAS consists in impregnating the sample of interest with a solution containing nitroxide radicals, which upon microwave irradiation serve as exogenous polarizing agents. On the other hand, in metal ion based (MI)-DNP, inorganic materials are doped with paramagnetic metal centres, which then can be used as endogenous polarizing agents. In this work we give an overview of the electron paramagnetic resonance (EPR) concepts required to characterize the metal ions and discuss the expected changes in the NMR response due to the presence of paramagnetic species. We highlight which properties of the electron spins are beneficial for applications as polarizing agents in DNP and how to recognize them, both from the EPR and NMR data. A theoretical description of the main DNP mechanisms is given, employing a quantum mechanical formalism, and these concepts are used to explain the spin dynamics observed in the DNP experiment. In addition, we highlight the main differences between MI-DNP and the more common approaches in MAS DNP, which use organic radicals as exogenous polarizing source. Finally, we review some applications of metal ions as polarizing agents in general and then focus particularly on research questions in materials science that can benefit from MI-DNP.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"138 ","pages":"Pages 70-104"},"PeriodicalIF":6.1,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48724745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An overview of Helium-3 NMR: Recent developments and applications","authors":"Leonid B. Krivdin","doi":"10.1016/j.pnmrs.2023.08.001","DOIUrl":"10.1016/j.pnmrs.2023.08.001","url":null,"abstract":"<div><p>The present review is focused on experimental and theoretical methods together with applications of helium NMR in chemistry and biochemistry. It comprises two main sections, the first dealing with standardization and instrumentation for <sup>3</sup>He NMR spectroscopy and the second dealing with its practical applications, mainly those in general and organic chemistry with a special emphasis on the rapidly developing and exciting area of fullerenes encapsulating helium atoms. Several general applications of <sup>3</sup>He NMR spectroscopy in physical chemistry and biomedicine are also briefly discussed.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"136 ","pages":"Pages 83-109"},"PeriodicalIF":6.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10269216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Burkhard Endeward, Matthias Bretschneider, Paul Trenkler, Thomas F. Prisner
{"title":"Implementation and applications of shaped pulses in EPR","authors":"Burkhard Endeward, Matthias Bretschneider, Paul Trenkler, Thomas F. Prisner","doi":"10.1016/j.pnmrs.2023.04.003","DOIUrl":"10.1016/j.pnmrs.2023.04.003","url":null,"abstract":"<div><p>In this review, we describe the application of shaped pulses for EPR spectroscopy. Pulses generated by fast arbitrary waveform generators are mostly used in the field of EPR spectroscopy for broadband (200 MHz-1 GHz) excitation of paramagnetic species. The implementation and optimization of such broadband pulses in existing EPR spectrometers, often designed and optimized for short rectangular microwave pulses, is demanding. Therefore, a major part of this review will describe in detail the implementation, testing and optimization of shaped pulses in existing EPR spectrometers. Additionally, we review applications using such pulses for broadband inversion of longitudinal magnetization as well as for the creation and manipulation of transverse magnetization in the field of dipolar and hyperfine EPR spectroscopy. They demonstrate the great potential of shaped pulses to improve the performance of pulsed EPR experiments. We give a brief theoretical description of shaped pulses and their limitations, especially for adiabatic pulses, most often used in EPR. We believe that this review can on the one hand be of practical use to EPR groups starting to work with such pulses, and on the other hand give readers an overview of the state of the art of shaped pulse applications in EPR spectroscopy.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"136 ","pages":"Pages 61-82"},"PeriodicalIF":6.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10269217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}