为量子计算控制核磁共振自旋系统

IF 7.3 2区 化学 Q2 CHEMISTRY, PHYSICAL
Jonathan A. Jones
{"title":"为量子计算控制核磁共振自旋系统","authors":"Jonathan A. Jones","doi":"10.1016/j.pnmrs.2024.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>Nuclear magnetic resonance is arguably both the best available quantum technology for implementing simple quantum computing experiments and the worst technology for building large scale quantum computers that has ever been seriously put forward. After a few years of rapid growth, leading to an implementation of Shor’s quantum factoring algorithm in a seven-spin system, the field started to reach its natural limits and further progress became challenging. Rather than pursuing more complex algorithms on larger systems, interest has now largely moved into developing techniques for the precise and efficient manipulation of spin states with the aim of developing methods that can be applied in other more scalable technologies and within conventional NMR. However, the user friendliness of NMR implementations means that they remain popular for proof-of-principle demonstrations of simple quantum information protocols.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"140 ","pages":"Pages 49-85"},"PeriodicalIF":7.3000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079656524000037/pdfft?md5=6984203993c485e5790fb1d345fac413&pid=1-s2.0-S0079656524000037-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Controlling NMR spin systems for quantum computation\",\"authors\":\"Jonathan A. Jones\",\"doi\":\"10.1016/j.pnmrs.2024.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nuclear magnetic resonance is arguably both the best available quantum technology for implementing simple quantum computing experiments and the worst technology for building large scale quantum computers that has ever been seriously put forward. After a few years of rapid growth, leading to an implementation of Shor’s quantum factoring algorithm in a seven-spin system, the field started to reach its natural limits and further progress became challenging. Rather than pursuing more complex algorithms on larger systems, interest has now largely moved into developing techniques for the precise and efficient manipulation of spin states with the aim of developing methods that can be applied in other more scalable technologies and within conventional NMR. However, the user friendliness of NMR implementations means that they remain popular for proof-of-principle demonstrations of simple quantum information protocols.</p></div>\",\"PeriodicalId\":20740,\"journal\":{\"name\":\"Progress in Nuclear Magnetic Resonance Spectroscopy\",\"volume\":\"140 \",\"pages\":\"Pages 49-85\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0079656524000037/pdfft?md5=6984203993c485e5790fb1d345fac413&pid=1-s2.0-S0079656524000037-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Magnetic Resonance Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079656524000037\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Magnetic Resonance Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079656524000037","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

可以说,核磁共振既是实现简单量子计算实验的最佳量子技术,也是迄今为止被认真提出的构建大规模量子计算机的最差技术。经过几年的快速发展,肖尔的量子因式分解算法在七旋系统中得以实现,量子计算领域开始达到其自然极限,进一步的进展变得具有挑战性。与其在更大的系统上追求更复杂的算法,现在人们的兴趣主要转移到开发精确、高效操纵自旋态的技术上,目的是开发可应用于其他更可扩展技术和传统 NMR 的方法。然而,核磁共振实施的用户友好性意味着它们在简单量子信息协议的原理验证演示中仍然很受欢迎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Controlling NMR spin systems for quantum computation

Controlling NMR spin systems for quantum computation

Nuclear magnetic resonance is arguably both the best available quantum technology for implementing simple quantum computing experiments and the worst technology for building large scale quantum computers that has ever been seriously put forward. After a few years of rapid growth, leading to an implementation of Shor’s quantum factoring algorithm in a seven-spin system, the field started to reach its natural limits and further progress became challenging. Rather than pursuing more complex algorithms on larger systems, interest has now largely moved into developing techniques for the precise and efficient manipulation of spin states with the aim of developing methods that can be applied in other more scalable technologies and within conventional NMR. However, the user friendliness of NMR implementations means that they remain popular for proof-of-principle demonstrations of simple quantum information protocols.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.30
自引率
8.20%
发文量
12
审稿时长
62 days
期刊介绍: Progress in Nuclear Magnetic Resonance Spectroscopy publishes review papers describing research related to the theory and application of NMR spectroscopy. This technique is widely applied in chemistry, physics, biochemistry and materials science, and also in many areas of biology and medicine. The journal publishes review articles covering applications in all of these and in related subjects, as well as in-depth treatments of the fundamental theory of and instrumental developments in NMR spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信