Marzieh Rezaei, Amir Jalali, Dheyaa Hussein Sadah Al-Azzawi
{"title":"Engineered Bacteriophages: Advances in Phage Genome Redesign Strategies for Therapeutic and Environmental Applications.","authors":"Marzieh Rezaei, Amir Jalali, Dheyaa Hussein Sadah Al-Azzawi","doi":"10.2174/0109298665372719250616085616","DOIUrl":"https://doi.org/10.2174/0109298665372719250616085616","url":null,"abstract":"<p><p>Bacteriophages, or phages, have emerged as powerful platforms in synthetic biology, offering innovative solutions for therapeutic and environmental challenges through advanced genome redesign strategies. This review explores a wide range of phage engineering techniques, including CRISPR (clustered regularly-interspaced short palindromic repeats)-Cas systems, phage display, random and site-directed mutagenesis, retrons, and rebooting approaches, highlighting their potential to create phages with tailored functionalities. CRISPR-Cas systems enable precise genome editing, allowing the development of phages with expanded host ranges, biofilm degradation capabilities, and targeted antimicrobial activity. Phage display facilitates the presentation of peptides on phage surfaces, enabling applications in targeted drug delivery, tumor imaging, and bioremediation. Beyond these, techniques like retron-mediated recombination and homologous recombination offer additional avenues for precise phage genome modification. In the therapeutic realm, engineered phages show promise in combating drug-resistant infections, modulating the microbiome, and delivering targeted therapies for cancer and other diseases. Environmentally, phage-based strategies, such as the use of phage-displayed metal-binding peptides, provide innovative solutions for bioremediation and reducing exposure to toxic heavy metals. This review also addresses challenges, such as phage resistance, immune responses, and the limitations of current engineering methods, while exploring future directions, including the development of improved CRISPR systems, phage-based biosensors, and high-throughput screening platforms. By integrating cutting-edge genome redesign strategies with diverse applications, this review underscores the transformative potential of engineered bacteriophages in addressing global healthcare and environmental sustainability challenges.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144560878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recombinant Expression of L-methioninase from Brevibacterium linens and Evaluation of its Anticarcinogenic Properties against MiaPaCa-2 Cells.","authors":"Semih Latif İpek, Meryem Damla Özdemir Alkış, Ahmet Tülek, Dilek Göktürk","doi":"10.2174/0109298665383781250624054915","DOIUrl":"https://doi.org/10.2174/0109298665383781250624054915","url":null,"abstract":"<p><strong>Introduction: </strong>This study aimed to investigate the anti-carcinogenic effects of recombinant L- methioninase (rBlmet) on the pancreatic cancer cell line MiaPaCa-2.</p><p><strong>Methods: </strong>In this study, rBlmet was initially cloned, expressed, and purified. To increase enzyme activity, the His-tags on the enzyme were removed using thrombin. rBlmet was then applied to MiaPaCa- 2 cells, and the cell viability of MiaPaCa-2 cells was evaluated by neutral red assay after rBlmet treatment. The combined effect of etoposide with rBlmet against MiaPaCa-2 cells was also evaluated for 12 and 24 hours using a neutral red assay. Furthermore, cell morphology was evaluated by Giemsa and DAPI/F-actin staining methods. Survivin and caspase-3 gene expression levels were measured by RT-qPCR.</p><p><strong>Results and discussion: </strong>The specific activity of the enzyme increased after His-tag elimination to 5.62 μmol/mg per minute. rBlmet showed a significant cytotoxic effect on the MiaPaCa-2 cell line. The IC50 value (24 h) of rBlmet for MiaPaCa-2 cells was 3.02 U/mL. In addition, rBlmet increased the cytotoxic effect of etoposide on the MiaPaCa-2 cell line, while it showed less effect on HaCat, which is a normal human cell line. Furthermore, rBlmet increased caspase-3 expression and downregulated survivin gene expression in MiaPaCa-2 cell lines. It successfully inhibited the growth of Mia-PaCa-2 cells by exploiting exogenous methionine amino acid in the growth medium. This study revealed promising results. However, further studies are needed on additional pancreatic cancer cell lines and in vivomodels.</p><p><strong>Conclusion: </strong>Based on these findings, it can be concluded that rBlmet not only has great potential to treat pancreatic cancer in the future but can also be used as an adjuvant to enhance the effectiveness of chemotherapeutic agents like etoposide.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144560879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmad Fazilat, Alireza Soleimani Mamalo, Salomeh Roshani, Somaieh Razmi, Mohammad Valilo
{"title":"The Interaction between miRNAs and 14-3-3ζ Protein in Different Diseases.","authors":"Ahmad Fazilat, Alireza Soleimani Mamalo, Salomeh Roshani, Somaieh Razmi, Mohammad Valilo","doi":"10.2174/0109298665377739250618153852","DOIUrl":"https://doi.org/10.2174/0109298665377739250618153852","url":null,"abstract":"<p><p>Members of the 14-3-3 protein family are involved in various cellular processes, including migration, angiogenesis, cell cycle, apoptosis, and signal transduction. Nevertheless, the 14-3-3 family possibly plays a fundamental role in the development of diseases and cancer by regulating various biological pathways. MicroRNAs (miRNAs) are mainly transcribed by RNA polymerase II (pol II), with only a few exceptions involving RNA polymerase III (pol III). They can control cell mechanisms through different pathways. miRNAs inhibit or destroy mRNAs by binding to them. They control intracellular mechanisms by binding to molecules such as the 14-3-3ζ protein. miRNAs play a role in regulating this protein, and by inducing or suppressing it, they contribute to either the development or the prevention of the diseases. Therefore, considering the importance of the 14-3-3ζ protein in different pathways within the body, we decided to investigate the relationship between miRNAs and 14-3-3ζ and clarify their interactions, in this review.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144560880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emre Uyar, Sibel Kokturk, Mohammed Omer Khalid Mohammed, Pınar Çobanturk, Nouralhuda A Z Abuqaoud, Furuzan Akar, Güner Ulak, Faruk Erden, Oğuz Mutlu
{"title":"Effect of Adipokinetic Hormone on Learning-Memory in a Scopolamine-Induced Alzheimer's Model in Mice.","authors":"Emre Uyar, Sibel Kokturk, Mohammed Omer Khalid Mohammed, Pınar Çobanturk, Nouralhuda A Z Abuqaoud, Furuzan Akar, Güner Ulak, Faruk Erden, Oğuz Mutlu","doi":"10.2174/0109298665380324250602054823","DOIUrl":"https://doi.org/10.2174/0109298665380324250602054823","url":null,"abstract":"<p><strong>Background: </strong>Neurosecretory cells of insects synthesize Adipokinetic Hormone (AKH). Previous studies indicated that AKH improves memory functions.</p><p><strong>Objective: </strong>This study aimed to explore the effects of AKH on learning and memory in an Alzheimer's disease model.</p><p><strong>Methods: </strong>Morris Water Maze (MWM), Passive Avoidance (PA), and Modified Elevated Plus Maze (mEPM) tests were conducted in BALB/c mice. Initially, each group consisted of 8 to 9 animals; in total, 120 animals were used in this study. The groups included control, Ani-AKH (1 and 2 mg/kg), Lia-AKH (1 and 2 mg/kg), Pht-HrTH (1 and 2 mg/kg), Scopolamine (1 mg/kg), and Scopolamine combinations. Hormones were given for 6 days in the MWM test to evaluate learning and memory before the second trial in the PA test for memory assessment and after the first trial in the mEPM test to examine consolidation.</p><p><strong>Results: </strong>In the MWM test, Ani-AKH and Pht-HrTH reduced escape latency compared to the scopolamine group (p<0.05). During the probe trial, Ani-AKH increased time in the escape platform quadrant (p<.0.5) and reversed scopolamine's effects (p<0.001). Lia-AKH and Pht-HrTh did not affect time in the quadrant but reversed scopolamine's effects (p<0.01). In the PA test, Ani- AKH reversed scopolamine's effects (p<.0.5), while Lia-AKH did so in the mEPM test (p<0.01). The control group showed strong muscarinic receptor staining, while the scopolamine group did not. Ani-AKH and Lia-AKH showed moderate to strong receptor staining, indicating partial restoration.</p><p><strong>Conclusion: </strong>Our study indicates that AKH may help reduce memory impairments, though the effects depend on the specific assessment methods used in the tests.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144529354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing Tissue Factor Production: The Role of N-Glycosylation and ERAD Pathway Modulation.","authors":"Yi-Shi Liu, Yue Dou, Xiaoman Zhou, Zijie Li, Nakanishi Hideki","doi":"10.2174/0109298665364078250519065417","DOIUrl":"https://doi.org/10.2174/0109298665364078250519065417","url":null,"abstract":"<p><strong>Background: </strong>Tissue Factor (TF) is a crucial transmembrane glycoprotein that triggers blood coagulation upon vascular or tissue injury by binding to plasma factors VII and VIIa. In recent years, the demand for TF has rapidly increased due to its pivotal role in preoperative coagulation tests. However, large-scale production of TF remains challenging despite successful recombinant expression, as incorrect post-translational modifications adversely affect TF activity.</p><p><strong>Objective: </strong>This study aims to investigate the role of post-translational modifications, specifically N-glycosylation, in TF activity and stability. Additionally, it explores strategies to enhance TF production by reducing its degradation through genetic modulation.</p><p><strong>Methods: </strong>We compared TF activity derived from human cells and E. coli to assess the impact of post-translational modifications. Furthermore, we examined the effect of N-glycosylation on TF function. To address TF degradation, we knocked out the HRD1 gene, a key component of the endoplasmic- reticulum-associated degradation (ERAD) pathway, and evaluated its impact on TF stability and activity.</p><p><strong>Results: </strong>TF produced in human cells exhibited higher activity than TF expressed in E. coli, emphasizing the importance of post-translational modifications. Specifically, N-glycosylation was found to influence TF activity and stability significantly. Additionally, we observed that knocking out the HRD1 gene effectively reduced TF degradation without compromising its activity.</p><p><strong>Conclusion: </strong>Our findings underscore the crucial role of N-glycosylation in TF function and stability. Moreover, the modulation of the ERAD pathway through HRD1 knockout presents a promising approach for enhancing TF production. These insights could contribute to the large-scale manufacturing of functionally active TF for clinical and research applications.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144187769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cleverson Diniz Teixeira de Freitas, Jefferson Soares de Oliveira
{"title":"Use of Plant Peptidases for the Production of Therapeutic Peptides.","authors":"Cleverson Diniz Teixeira de Freitas, Jefferson Soares de Oliveira","doi":"10.2174/0109298665373399250319082357","DOIUrl":"https://doi.org/10.2174/0109298665373399250319082357","url":null,"abstract":"<p><p>Peptidases play crucial roles in numerous physiological processes within living organisms. Therefore, they have been employed in various pharmaceutical applications. Plant peptidases have attracted considerable attention in various areas due to their specificity, stability across a diverse range of pH and temperatures, and safety profile. Here, we have focused on the use of plant peptidases, mostly papain and bromelain, to produce biologically active peptides, which confer various health advantages, including antioxidant, antimicrobial, antihypertensive, analgesic, antidiabetic, and anti-inflammatory effects. We have also discussed the importance of the action mechanism of peptidases for generating bioactive peptides with specific sequences and functions, the ecological and sustainability benefits of plant-derived peptidases compared to animal alternatives, digestive stability and bioavailability of peptides, as well as some obstacles to the commercialization of bioactive peptides and key challenges in peptidase-based industrial applications. Finally, we have examined enzyme immobilization as a viable method to enhance the production of bioactive peptides, offering numerous advantages in both research and industry contexts.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144014341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plant-derived Cyclotides in Immunomodulation and their Therapeutic Potential.","authors":"Reema Mishra, Preeti Agarwal, Anshita Sharma, Meenal Mittal, Pooja Gulati, Aparajita Mohanty","doi":"10.2174/0109298665364479250214101422","DOIUrl":"https://doi.org/10.2174/0109298665364479250214101422","url":null,"abstract":"<p><p>The incidences of immune-related disorders have drastically increased in recent years across the world population. Treatment and management of these diseases, especially autoimmune disorders, are complex and challenging. Available synthetic drugs are not completely effective and also pose serious side effects for the patients. Cyclotides are a class of plant-derived cyclic peptides (28-37 amino acids) with three conserved disulfide linkages establishing a cyclic cystine knot (CCK) motif that makes them very stable biomolecules. Their inherent stability, bioavailability and membrane-penetrating capabilities render them attractive potential pharmacological agents. Studies have demonstrated that cyclotides can either enhance or suppress immune responses, making them versatile candidates for treating various immune-related disorders. Of more than 1000 cyclotides discovered to date, only up to 15 native cyclotides (e.g. kalata B1, pase and caripe cyclotides) have been screened to demonstrate their immunomodulatory activity. Of special significance is the chemically synthesised lysine mutant of kalata B1 viz. [T20K], where preclinical studies have shown promise in the treatment of the autoimmune disorder, multiple sclerosis. In vivo studies in mice models have demonstrated that daily administration of 1mg/day of [T20K] led to a significant decrease in the level of cytokine secretion, lesser demyelination (<1%) and very low inflammatory index (<0.5), in the immunized mice. Moreover, when compared with other immunosuppressive drugs (azathioprine, prednisolone, and cyclosporine A) there was a notable drop in mortality and morbidity in mice administered with [T20K]. The cyclotides, kalata B1 and MCoTI-I have also been used as scaffolds to graft bioactive peptides with immunomodulatory activity. Subsequent in vitro and in vivo studies of these grafted cyclotides have demonstrated their therapeutic ability. Keeping in view the therapeutic potential of cyclotides as immunomodulatory peptides, the present review discusses its current research scenario and implications for the future in tackling immune-related disorders.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143664383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yihui Chen, Shichai Hong, Zhefeng Wang, Xiang Hong, Gang Chen, Yulong Huang, Yue Lin, Xinsheng Xie, Chenwei Lin, Weifeng Lu
{"title":"Overexpression of HIF2α Enhances the Angiogenesis-Promoting Effect of hUC-MSC-Derived Extracellular Vesicles by Stimulating miR-146a.","authors":"Yihui Chen, Shichai Hong, Zhefeng Wang, Xiang Hong, Gang Chen, Yulong Huang, Yue Lin, Xinsheng Xie, Chenwei Lin, Weifeng Lu","doi":"10.2174/0109298665347753241028072130","DOIUrl":"10.2174/0109298665347753241028072130","url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to explore whether excessive HIF2α can amplify the impact of human Umbilical Cord Mesenchymal Stem Cell-derived Extracellular Vesicles (hUC-MSC- EVs) on endothelial cells.</p><p><strong>Methods: </strong>In this study, we created HIF2α-overexpressing hUC-MSC-EVs and compared their pro-angiogenic effects with control EVs on Human Umbilical Vein Endothelial Cells (HUVECs). MTT assay and Edu staining were used to detect the viability and proliferation ability of HUVECs, and Transwell and Tube Formation Assays were used to detect cell migration and tube formation ability. qPCR assay was used to detect the expression of cellular angiogenic markers. Subsequently, miRNAs that might be regulated by HIF2α were predicted by bioinformatics analysis, and qPCR was used to detect the relative expression of miRNAs in HUVECs treated with hUC-MSC- EV, which over-expresses HIF2α. Subsequently, miR-146a inhibitors were used to investigate the role of miR-146a in mediating the pro-angiogenic effect of HIF2α on HUVECs by detecting cell viability, proliferation, migration, tube-forming ability, and expression of angiogenic markers. Finally, AKT/ERK phosphorylation and Spred1 expression were detected using Western blotting.</p><p><strong>Results: </strong>Our findings have indicated that overexpression of HIF2α significantly enhances the ability of hUC-MSC-EVs to stimulate proliferation, migration, and tube formation in HUVECs, as demonstrated by MTT/Edu staining, Transwell assay, and tube formation assay results, respectively. Mechanistically, excessive HIF2α has been found to induce the expression of miR-146a in HUVECs and the overexpression of a miR-146a inhibitor to negate the influence of excessive HIF2α on hUC-MSC-EV-induced activity in HUVECs.</p><p><strong>Conclusion: </strong>The overexpression of HIF2α is an effective strategy for enhancing the pro-angiogenic function of hUC-MSC-EVs.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"62-74"},"PeriodicalIF":1.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142732135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olugbenga Samuel Oladimeji, Olasunkanmi Kayode Awote, Nzubechi Olympian Elum
{"title":"Pro-fertility and <i>Antioxidant Potentials</i> of <i>Vigna unguiculata</i> (Cowpea) Protein Isolate and Essential Oil: An <i>In vivo</i> and <i>In silico</i> Studies.","authors":"Olugbenga Samuel Oladimeji, Olasunkanmi Kayode Awote, Nzubechi Olympian Elum","doi":"10.2174/0109298665358634241217094220","DOIUrl":"10.2174/0109298665358634241217094220","url":null,"abstract":"<p><strong>Introduction: </strong><i>Vigna unguiculata</i> (Cowpea), a legume rich in phytochemicals, has been traditionally used to improve fertility and treat various ailments. This study used <i>in-silico</i> and <i>invivo</i> methods to evaluate the effects of cowpea protein isolate and essential oil on reproductive hormonal and antioxidant indices.</p><p><strong>Methods: </strong>Forty (40) female rats were divided into eight groups (n=5). After 14 days of treatment, hormone levels (progesterone, prolactin, testosterone and estradiol) and antioxidant activities (superoxide dismutase (SOD), catalase (CAT) were assessed using biochemical kits and standard procedures. Molecular docking studies were performed using PyRx and Biovia Discovery Studio 2021. The ligands generated through gas chromatography-mass spectroscopy (GCMS) analysis of cowpea oil and the target proteins (SOD and CAT) were from downloaded PubChem and RCSB Protein Data Bank, respectively.</p><p><strong>Results: </strong>The results of this study showed that cowpea essential oil and protein isolate significantly (p<0.05) reduced plasma CAT and SOD activities while increasing their activities in the ovary and liver tissues compared to the infertile untreated group. Consistent administration of either cowpea oil or protein isolate was observed to positively regulate the hormonal indices in the infertile treated groups. Phthalic acid, 2-cyclohexyl ethyl isobutyl ester demonstrated a strong binding affinity and binding constant with SOD and CAT, which suggests that the ligands from cowpea essential oil may have antioxidant and pro-fertility properties that could be developed to treat fertility- related issues.</p><p><strong>Conclusion: </strong>Based on the results of this study, it can be concluded that <i>V. unguiculata</i> has antioxidant property, and can promote fertility, possibly through its rich embedded phytochemicals, which substantiates its traditional claim.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"111-123"},"PeriodicalIF":1.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Li, Jie Liu, Lili He, Mi Tian, Yingying Xu, Bing Peng
{"title":"miR-584-5p Regulates MSMO1 to Modulate the AKT/PI3K Pathway and Inhibit Breast Cancer Progression.","authors":"Xin Li, Jie Liu, Lili He, Mi Tian, Yingying Xu, Bing Peng","doi":"10.2174/0109298665339026250114070523","DOIUrl":"10.2174/0109298665339026250114070523","url":null,"abstract":"<p><strong>Introduction: </strong>Endogenous microRNAs (miRNAs) are critical regulators of tumor progression, making their role in breast cancer an important area of investigation.</p><p><strong>Methods: </strong>This study examined the regulation of MSMO1 by miR-584-5p in breast cancer cells. Using bioinformatics and Western blotting, we confirmed MSMO1 expression in breast cancer cells and evaluated its effects on cell migration, invasion, and the AKT signaling pathway. In vivo experiments further supported these findings. The interaction between miR-584-5p and MSMO1 was validated through luciferase reporter assays, while functional studies highlighted the impact of miR-584-5p on cancer progression.</p><p><strong>Results: </strong>Our findings revealed that MSMO1 is upregulated in breast cancer, enhancing cell migration and invasion. Silencing MSMO1 diminished AKT pathway activity, and luciferase assays confirmed MSMO1 as a direct target of miR-584-5p.</p><p><strong>Conclusion: </strong>Overexpression of miR-584-5p suppressed migration and invasion of breast cancer cells. In summary, miR-584-5p is likely to modulate MSMO1 and subsequently regulate the AKT/ PI3K pathway, presenting a promising therapeutic target for breast cancer treatment.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"171-182"},"PeriodicalIF":1.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}