Emre Uyar, Sibel Kokturk, Mohammed Omer Khalid Mohammed, Pınar Çobanturk, Nouralhuda A Z Abuqaoud, Furuzan Akar, Güner Ulak, Faruk Erden, Oğuz Mutlu
{"title":"脂肪动力激素对东莨菪碱诱导的阿尔茨海默病模型小鼠学习记忆的影响。","authors":"Emre Uyar, Sibel Kokturk, Mohammed Omer Khalid Mohammed, Pınar Çobanturk, Nouralhuda A Z Abuqaoud, Furuzan Akar, Güner Ulak, Faruk Erden, Oğuz Mutlu","doi":"10.2174/0109298665380324250602054823","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neurosecretory cells of insects synthesize Adipokinetic Hormone (AKH). Previous studies indicated that AKH improves memory functions.</p><p><strong>Objective: </strong>This study aimed to explore the effects of AKH on learning and memory in an Alzheimer's disease model.</p><p><strong>Methods: </strong>Morris Water Maze (MWM), Passive Avoidance (PA), and Modified Elevated Plus Maze (mEPM) tests were conducted in BALB/c mice. Initially, each group consisted of 8 to 9 animals; in total, 120 animals were used in this study. The groups included control, Ani-AKH (1 and 2 mg/kg), Lia-AKH (1 and 2 mg/kg), Pht-HrTH (1 and 2 mg/kg), Scopolamine (1 mg/kg), and Scopolamine combinations. Hormones were given for 6 days in the MWM test to evaluate learning and memory before the second trial in the PA test for memory assessment and after the first trial in the mEPM test to examine consolidation.</p><p><strong>Results: </strong>In the MWM test, Ani-AKH and Pht-HrTH reduced escape latency compared to the scopolamine group (p<0.05). During the probe trial, Ani-AKH increased time in the escape platform quadrant (p<.0.5) and reversed scopolamine's effects (p<0.001). Lia-AKH and Pht-HrTh did not affect time in the quadrant but reversed scopolamine's effects (p<0.01). In the PA test, Ani- AKH reversed scopolamine's effects (p<.0.5), while Lia-AKH did so in the mEPM test (p<0.01). The control group showed strong muscarinic receptor staining, while the scopolamine group did not. Ani-AKH and Lia-AKH showed moderate to strong receptor staining, indicating partial restoration.</p><p><strong>Conclusion: </strong>Our study indicates that AKH may help reduce memory impairments, though the effects depend on the specific assessment methods used in the tests.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Adipokinetic Hormone on Learning-Memory in a Scopolamine-Induced Alzheimer's Model in Mice.\",\"authors\":\"Emre Uyar, Sibel Kokturk, Mohammed Omer Khalid Mohammed, Pınar Çobanturk, Nouralhuda A Z Abuqaoud, Furuzan Akar, Güner Ulak, Faruk Erden, Oğuz Mutlu\",\"doi\":\"10.2174/0109298665380324250602054823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Neurosecretory cells of insects synthesize Adipokinetic Hormone (AKH). Previous studies indicated that AKH improves memory functions.</p><p><strong>Objective: </strong>This study aimed to explore the effects of AKH on learning and memory in an Alzheimer's disease model.</p><p><strong>Methods: </strong>Morris Water Maze (MWM), Passive Avoidance (PA), and Modified Elevated Plus Maze (mEPM) tests were conducted in BALB/c mice. Initially, each group consisted of 8 to 9 animals; in total, 120 animals were used in this study. The groups included control, Ani-AKH (1 and 2 mg/kg), Lia-AKH (1 and 2 mg/kg), Pht-HrTH (1 and 2 mg/kg), Scopolamine (1 mg/kg), and Scopolamine combinations. Hormones were given for 6 days in the MWM test to evaluate learning and memory before the second trial in the PA test for memory assessment and after the first trial in the mEPM test to examine consolidation.</p><p><strong>Results: </strong>In the MWM test, Ani-AKH and Pht-HrTH reduced escape latency compared to the scopolamine group (p<0.05). During the probe trial, Ani-AKH increased time in the escape platform quadrant (p<.0.5) and reversed scopolamine's effects (p<0.001). Lia-AKH and Pht-HrTh did not affect time in the quadrant but reversed scopolamine's effects (p<0.01). In the PA test, Ani- AKH reversed scopolamine's effects (p<.0.5), while Lia-AKH did so in the mEPM test (p<0.01). The control group showed strong muscarinic receptor staining, while the scopolamine group did not. Ani-AKH and Lia-AKH showed moderate to strong receptor staining, indicating partial restoration.</p><p><strong>Conclusion: </strong>Our study indicates that AKH may help reduce memory impairments, though the effects depend on the specific assessment methods used in the tests.</p>\",\"PeriodicalId\":20736,\"journal\":{\"name\":\"Protein and Peptide Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein and Peptide Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0109298665380324250602054823\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0109298665380324250602054823","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of Adipokinetic Hormone on Learning-Memory in a Scopolamine-Induced Alzheimer's Model in Mice.
Background: Neurosecretory cells of insects synthesize Adipokinetic Hormone (AKH). Previous studies indicated that AKH improves memory functions.
Objective: This study aimed to explore the effects of AKH on learning and memory in an Alzheimer's disease model.
Methods: Morris Water Maze (MWM), Passive Avoidance (PA), and Modified Elevated Plus Maze (mEPM) tests were conducted in BALB/c mice. Initially, each group consisted of 8 to 9 animals; in total, 120 animals were used in this study. The groups included control, Ani-AKH (1 and 2 mg/kg), Lia-AKH (1 and 2 mg/kg), Pht-HrTH (1 and 2 mg/kg), Scopolamine (1 mg/kg), and Scopolamine combinations. Hormones were given for 6 days in the MWM test to evaluate learning and memory before the second trial in the PA test for memory assessment and after the first trial in the mEPM test to examine consolidation.
Results: In the MWM test, Ani-AKH and Pht-HrTH reduced escape latency compared to the scopolamine group (p<0.05). During the probe trial, Ani-AKH increased time in the escape platform quadrant (p<.0.5) and reversed scopolamine's effects (p<0.001). Lia-AKH and Pht-HrTh did not affect time in the quadrant but reversed scopolamine's effects (p<0.01). In the PA test, Ani- AKH reversed scopolamine's effects (p<.0.5), while Lia-AKH did so in the mEPM test (p<0.01). The control group showed strong muscarinic receptor staining, while the scopolamine group did not. Ani-AKH and Lia-AKH showed moderate to strong receptor staining, indicating partial restoration.
Conclusion: Our study indicates that AKH may help reduce memory impairments, though the effects depend on the specific assessment methods used in the tests.
期刊介绍:
Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations.
Protein & Peptide Letters focuses on:
Structure Studies
Advances in Recombinant Expression
Drug Design
Chemical Synthesis
Function
Pharmacology
Enzymology
Conformational Analysis
Immunology
Biotechnology
Protein Engineering
Protein Folding
Sequencing
Molecular Recognition
Purification and Analysis