{"title":"Dawn of photoredox catalysis.","authors":"Munetaka Akita","doi":"10.2183/pjab.101.019","DOIUrl":"https://doi.org/10.2183/pjab.101.019","url":null,"abstract":"<p><p>Photoredox catalysis, which facilitates organic transformations under visible-light irradiation, including sunlight, has garnered considerable attention as a cornerstone of green chemistry. Since the early days of this field around 2010, the author's group has made substantial contributions to its advancement. This review article provides a concise overview of the history and fundamental principles of photoredox catalysis, along with highlights of the achievements by the author's group. Although colorless organic compounds cannot be directly activated by visible light, photo-excited colored catalysts, with their two half-occupied frontier orbitals, play dual roles via electron transfer processes with organic substrates. The hole in the lower-energy orbital functions as a single-electron oxidant, whereas the electron in the higher-energy orbital acts as a single-electron reductant, enabling the formation of reactive radical intermediates from diverse organic compounds, including colorless ones. The discussion will focus on the key transformations developed by the author's group, including bimetallic photocatalysis, fluoroalkylation, and catalysis in aqueous media.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"101 5","pages":"274-301"},"PeriodicalIF":4.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143980761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The potential health risks of exposure to environmental chemicals - Global implications for future generations.","authors":"Reiko Kishi, Atsuko Ikeda, Rahel Mesfin Ketema","doi":"10.2183/pjab.101.015","DOIUrl":"https://doi.org/10.2183/pjab.101.015","url":null,"abstract":"<p><p>In 2001, we launched the Hokkaido Study, the first prospective birth cohort study in Japan. We are currently tracking the effects of environmental chemicals, using a life course approach. The study examines life circumstances after birth, and the longest follow-up to date is 20 years of age. We have measured prenatal exposure to dioxins, organochlorine pesticides, per- and polyfluoroalkyl substances, plasticizers such as di(2-ethylhexyl) phthalate, and bisphenol A. Our findings have mostly revealed that increased exposure to these environmental chemicals is linked to increased risk of lower birth size, effects on thyroid and steroid hormones, adipokine levels, as well as disruption of neurodevelopment, including causing asthma and respiratory symptoms. However, it should be noted that our findings also include protective or null findings, which may be due to low chemical concentrations or differences in prenatal or postnatal exposure. We would like to emphasize the importance of long-term continuation of the cohort, effective utilization of the data, and application of the results to environmental and health policies.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"101 4","pages":"197-215"},"PeriodicalIF":4.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144042042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genome-wide changes of protein translation levels for cell and organelle proliferation in a simple unicellular alga.","authors":"Yuko Mogi, Yoshitaka Matsuo, Yuiki Kondo, Tetsuya Higashiyama, Toshifumi Inada, Yamato Yoshida","doi":"10.2183/pjab.101.002","DOIUrl":"10.2183/pjab.101.002","url":null,"abstract":"<p><p>Cell proliferation is a fundamental characteristic of organisms, driven by the holistic functions of multiple proteins encoded in the genome. However, the individual contributions of thousands of genes and the millions of protein molecules they express to cell proliferation are still not fully understood, even in simple eukaryotes. Here, we present a genome-wide translation map of cells during proliferation in the unicellular alga Cyanidioschyzon merolae, based on the sequencing of ribosome-protected messenger RNA fragments. Ribosome profiling has revealed both qualitative and quantitative changes in protein translation for each gene during cell division, driven by the large-scale reallocation of ribosomes. Comparisons of ribosome footprints from non-dividing and dividing cells allowed the identification of proteins involved in cell proliferation. Given that in vivo experiments on two selected candidate proteins identified a division-phase-specific mitochondrial nucleoid protein and a mitochondrial division protein, further analysis of the candidate proteins may offer key insights into the comprehensive mechanism that facilitate cell and organelle proliferation.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"101 1","pages":"41-53"},"PeriodicalIF":4.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808204/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New molecules indispensable for hyaluronan degradation, HYBID (CEMIP/KIAA1199) and TMEM2 (CEMIP2): Differential roles in physiological and pathological non-neoplastic conditions.","authors":"Hiroyuki Yoshida, Shintaro Inoue, Yasunori Okada","doi":"10.2183/pjab.101.021","DOIUrl":"https://doi.org/10.2183/pjab.101.021","url":null,"abstract":"<p><p>The biological activity of hyaluronan (HA), a major component of the extracellular matrix in vertebrate tissues, depends on its molecular weight, and thus its degradation is a critical process for HA biological functions. Here, we review the characteristics of newly discovered proteins essential for HA degradation, hyaluronan-binding protein involved in hyaluronan depolymerization (HYBID), also known as cell migration inducing hyaluronidase 1 (CEMIP) and KIAA1199, and transmembrane protein-2 (TMEM2; alias CEMIP2). Human and mouse forms of HYBID exert their HA-degrading activity in special microenvironments including recycling endosomes. Mouse TMEM2 functions as a cell-surface hyaluronidase for HA turnover in local tissues, lymph nodes, and the liver. In contrast, the role of human TMEM2 in HA degradation is the subject of much debate. HYBID expression is upregulated by proinflammatory factors such as histamine and interleukin-6 and downregulated by transforming growth factor-β. HYBID is involved in physiological HA turnover in human skin and joint tissues and plays an important role in their pathological destruction by accelerating HA degradation.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"101 6","pages":"317-338"},"PeriodicalIF":4.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144275825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Incorporation of photosynthetically active algal chloroplasts in cultured mammalian cells towards photosynthesis in animals.","authors":"Ryota Aoki, Yayoi Inui, Yoji Okabe, Mayuko Sato, Noriko Takeda-Kamiya, Kiminori Toyooka, Koki Sawada, Hayato Morita, Baptiste Genot, Shinichiro Maruyama, Tatsuya Tomo, Kintake Sonoike, Sachihiro Matsunaga","doi":"10.2183/pjab.100.035","DOIUrl":"10.2183/pjab.100.035","url":null,"abstract":"<p><p>Chloroplasts are photosynthetic organelles that evolved through the endosymbiosis between cyanobacteria-like symbionts and hosts. Many studies have attempted to isolate intact chloroplasts to analyze their morphological characteristics and photosynthetic activity. Although several studies introduced isolated chloroplasts into the cells of different species, their photosynthetic activities have not been confirmed. In this study, we isolated photosynthetically active chloroplasts from the primitive red alga Cyanidioschyzon merolae and incorporated them in cultured mammalian cells via co-cultivation. The incorporated chloroplasts retained their thylakoid structure in intracellular vesicles and were maintained in the cytoplasm, surrounded by the mitochondria near the nucleus. Moreover, the incorporated chloroplasts maintained electron transport activity of photosystem II in cultured mammalian cells for at least 2 days after the incorporation. Our top-down synthetic biology-based approach may serve as a foundation for creating artificially photosynthetic animal cells.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":" ","pages":"524-536"},"PeriodicalIF":4.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shogo Nishiyama, Tomohiro Kara, Brian Thorsbro, Hiromi Saida, Yohsuke Takamori, Masaaki Takahashi, Takayuki Ohgami, Kohei Ichikawa, Rainer Schödel
{"title":"Origin of an orbiting star around the galactic supermassive black hole.","authors":"Shogo Nishiyama, Tomohiro Kara, Brian Thorsbro, Hiromi Saida, Yohsuke Takamori, Masaaki Takahashi, Takayuki Ohgami, Kohei Ichikawa, Rainer Schödel","doi":"10.2183/pjab.100.007","DOIUrl":"10.2183/pjab.100.007","url":null,"abstract":"<p><p>The tremendous tidal force that is linked to the supermassive black hole (SMBH) at the center of our galaxy is expected to strongly subdue star formation in its vicinity. Stars within 1'' from the SMBH thus likely formed further from the SMBH and migrated to their current positions. In this study, spectroscopic observations of the star S0-6/S10, one of the closest (projected distance from the SMBH of ≈0''.3) late-type stars were conducted. Using metal absorption lines in the spectra of S0-6, the radial velocity of S0-6 from 2014 to 2021 was measured, and a marginal acceleration was detected, which indicated that S0-6 is close to the SMBH. The S0-6 spectra were employed to determine its stellar parameters including temperature, chemical abundances ([M/H], [Fe/H], [α/Fe], [Ca/Fe], [Mg/Fe], [Ti/Fe]), and age. As suggested by the results of this study, S0-6 is very old (≳10 Gyr) and has an origin different from that of stars born in the central pc region.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":" ","pages":"86-99"},"PeriodicalIF":3.1,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138478406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cloning of human Type I interferon cDNAs.","authors":"Shigekazu Nagata","doi":"10.2183/pjab.100.001","DOIUrl":"10.2183/pjab.100.001","url":null,"abstract":"<p><p>In the late 1970s, crude interferon samples were found to exhibit anti-tumour activity. This discovery led to the interferon as a \"magic drug\" for cancer patients. Many groups, including those in Tokyo, Zürich, and San Francisco, attempted to identify human interferon cDNAs. Tadatsugu Taniguchi was the first to announce the cloning of human interferon-β cDNA in the December 1979 issue of Proc. Jpn. Acad. Ser. B. This was followed by the cloning of human interferon-α by a Zürich group and interferon-γ by a group in Genentech in San Francisco. Recombinant interferon proteins were produced on a large scale, and interferon-α was widely used to treat C-type hepatitis patients. The biological functions of interferons were quickly elucidated with the purified recombinant interferons. The molecular mechanisms underlying virus-induced interferon gene expression were also examined using cloned chromosomal genes. The background that led to interferon gene cloning and its impact on cytokine gene hunting is described herein.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":" ","pages":"1-14"},"PeriodicalIF":3.1,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864172/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10112526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calmodulin: a highly conserved and ubiquitous Ca<sup>2+</sup> sensor.","authors":"Kenji Sobue","doi":"10.2183/pjab.100.025","DOIUrl":"10.2183/pjab.100.025","url":null,"abstract":"<p><p>Calcium ions (Ca<sup>2+</sup>) play critical roles in various biological phenomena. The free Ca<sup>2+</sup> concentration in the cytoplasm of a resting cell is at the 10<sup>-7</sup> M level, whereas that outside the cell is 10<sup>-3</sup> M, creating a 10,000-fold gradient of Ca<sup>2+</sup> concentrations across the cell membrane, separating the intracellular and extracellular solutions.<sup>1),2)</sup> When a cell is activated by external stimuli, the intracellular Ca<sup>2+</sup> concentration increases to levels of 10<sup>-6</sup>-10<sup>-5</sup> M through Ca<sup>2+</sup> entry from the extracellular solution via plasma membrane Ca<sup>2+</sup> channels and/or Ca<sup>2+</sup> release from intracellular stores. This transient increase in Ca<sup>2+</sup> functions as an important signal mediated by Ca<sup>2+</sup> sensors. Thus, Ca<sup>2+</sup> signals are transmitted to intracellular loci such as distinct, localized targets of Ca<sup>2+</sup> sensors. Among numerous Ca<sup>2+</sup> sensors present in cells, calmodulin is a highly conserved and ubiquitous Ca<sup>2+</sup> sensor.<sup>3)</sup>.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"100 7","pages":"368-386"},"PeriodicalIF":4.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413395/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to \"Establishment of immune suppression by cancer cells in the tumor microenvironment\".","authors":"Hiroyoshi Nishikawa","doi":"10.2183/pjab.100.016","DOIUrl":"10.2183/pjab.100.016","url":null,"abstract":"","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"100 3","pages":"252"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11105973/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140094542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Invention of the split-anode magnetron.","authors":"Hidenori Mimura","doi":"10.2183/pjab.100.018","DOIUrl":"10.2183/pjab.100.018","url":null,"abstract":"<p><p>Magnetron production and use far exceed that of other microwave tubes due to their high operational efficiency, power efficiency, and cost-effectiveness in production. The magnetron was named by A. W. Hull; however, the device invented by Hull differs from the magnetron utilized as a microwave tube. The magnetron widely used today is based on the split-anode magnetron invented by K. Okabe. This overview introduces two papers published by Okabe in the Proceedings of the Imperial Academy and discusses the events that led to the discovery of the split-anode magnetron. In addition, the operation mechanisms of magnetrons are explained.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"100 5","pages":"281-292"},"PeriodicalIF":4.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}