{"title":"Chemical compositional analysis of jet fuels: Contributions of mass spectrometry in the 21st century","authors":"Mark Romanczyk","doi":"10.1002/mas.21825","DOIUrl":"10.1002/mas.21825","url":null,"abstract":"<p>Jet fuels are complex mixtures composed of many individual compounds that influence crucial chemical and physical properties. Approximately over the last 20 years, mass spectrometry studies provided important and extensive qualitative and quantitative information of the compounds that make up jet fuels. This review presents these main findings, evaluates the analytical methods utilized, and summarizes the hydrocarbons, nitrogen-, oxygen- and sulfur-containing compounds characterized in the jet fuels. Potential areas where mass spectrometry may play important roles in the future will also be discussed.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 2","pages":"345-368"},"PeriodicalIF":6.6,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40458923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ion-molecule reactions of mass-selected ions","authors":"Kevin Parker, Nicholas E. Bollis, Victor Ryzhov","doi":"10.1002/mas.21819","DOIUrl":"10.1002/mas.21819","url":null,"abstract":"<p>Gas-phase reactions of mass-selected ions with neutrals covers a very broad area of fundamental and applied mass spectrometry (MS). Oftentimes, ion-molecule reactions (IMR) can serve as a viable alternative to collision-induced dissociation and other ion dissociation techniques when using tandem MS. This review focuses on the literature pertaining applications of IMR since 2013. During the past decade considerable efforts have been made in analytical applications of IMR, including advances in one of the major techniques for characterization of unsaturated fatty acids and lipids, ozone-induced dissociation, and the development of a new technique for sequencing of large ions, hydrogen atom attachment/abstraction dissociation. Many advances have also been made in identifying gas-phase chemistry specific to a functional group in organic and biological compounds, which are useful in structure elucidation of analytes and differentiation of isomers/isobars. With “soft” ionization techniques like electrospray ionization having become mainstream for quite some time now, the efforts in the area of metal ion catalysis have firmly moved into exploring chemistry of ligated metal complexes in their “natural” oxidation states allowing to model individual steps of mechanisms in homogeneous catalysis, especially in combination with high-level DFT calculations. Finally, IMR continue to contribute to the body of knowledge in the area of chemistry of interstellar processes.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 1","pages":"47-89"},"PeriodicalIF":6.6,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40709543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mass spectrometry-based proteomic approaches for salivary protein biomarkers discovery and dental caries diagnosis: A critical review","authors":"Paras Ahmad, Ahmed Hussain, Walter L. Siqueira","doi":"10.1002/mas.21822","DOIUrl":"10.1002/mas.21822","url":null,"abstract":"<p>Dental caries is a multifactorial chronic disease resulting from the intricate interplay among acid-generating bacteria, fermentable carbohydrates, and several host factors such as saliva. Saliva comprises several proteins which could be utilized as biomarkers for caries prevention, diagnosis, and prognosis. Mass spectrometry-based salivary proteomics approaches, owing to their sensitivity, provide the opportunity to investigate and unveil crucial cariogenic pathogen activity and host indicators and may demonstrate clinically relevant biomarkers to improve caries diagnosis and management. The present review outlines the published literature of human clinical proteomics investigations on caries and extensively elucidates frequently reported salivary proteins as biomarkers. This review also discusses important aspects while designing an experimental proteomics workflow. The protein–protein interactions and the clinical relevance of salivary proteins as biomarkers for caries, together with uninvestigated domains of the discipline are also discussed critically.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 4","pages":"826-856"},"PeriodicalIF":6.6,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40711360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily H. Canessa, Rita Spathis, James S. Novak, Aaron Beedle, Kanneboyina Nagaraju, Luca Bello, Elena Pegoraro, Eric P. Hoffman, Yetrib Hathout
{"title":"Characterization of the dystrophin-associated protein complex by mass spectrometry","authors":"Emily H. Canessa, Rita Spathis, James S. Novak, Aaron Beedle, Kanneboyina Nagaraju, Luca Bello, Elena Pegoraro, Eric P. Hoffman, Yetrib Hathout","doi":"10.1002/mas.21823","DOIUrl":"10.1002/mas.21823","url":null,"abstract":"<p>The dystrophin-associated protein complex (DAPC) is a highly organized multiprotein complex that plays a pivotal role in muscle fiber structure integrity and cell signaling. The complex is composed of three distinct interacting subgroups, intracellular peripheral proteins, transmembrane glycoproteins, and extracellular glycoproteins subcomplexes. Dystrophin protein nucleates the DAPC and is important for connecting the intracellular actin cytoskeletal filaments to the sarcolemma glycoprotein complex that is connected to the extracellular matrix via laminin, thus stabilizing the sarcolemma during muscle fiber contraction and relaxation. Genetic mutations that lead to lack of expression or altered expression of any of the DAPC proteins are associated with different types of muscle diseases. Hence characterization of this complex in healthy and dystrophic muscle might bring insights into its role in muscle pathogenesis. This review highlights the role of mass spectrometry in characterizing the DAPC interactome as well as post-translational glycan modifications of some of its components such as α-dystroglycan. Detection and quantification of dystrophin using targeted mass spectrometry are also discussed in the context of healthy versus dystrophic skeletal muscle.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 1","pages":"90-105"},"PeriodicalIF":6.6,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40508538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoe Millbern, Alison Trettin, Rachel Wu, Morgan Demmler, Nelson R. Vinueza
{"title":"Synthetic dyes: A mass spectrometry approach and applications","authors":"Zoe Millbern, Alison Trettin, Rachel Wu, Morgan Demmler, Nelson R. Vinueza","doi":"10.1002/mas.21818","DOIUrl":"10.1002/mas.21818","url":null,"abstract":"<p>Synthetic dyes are found in a wide variety of applications today, including but not limited to textiles, foods, and medicine. The analysis of these molecules is pertinent to several fields such as forensics, environmental monitoring, and quality control, all of which require the sensitivity and selectivity of analysis provided by mass spectrometry (MS). Recently, there has been an increase in the implementation of MS evaluation of synthetic dyes by various methods, with the majority of research thus far falling under electrospray ionization and moving toward direct ionization methods. This review covers an overview of the chemistry of synthetic dyes needed for the understanding of MS sample preparation and spectral results, current fields of application, ionization methods, and fragmentation trends and works that have been reported in recent years.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 2","pages":"327-344"},"PeriodicalIF":6.6,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mas.21818","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40457161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using mass spectrometry-based methods to understand amyloid formation and inhibition of alpha-synuclein and amyloid beta","authors":"Wesley J. Wagner, Michael L. Gross","doi":"10.1002/mas.21814","DOIUrl":"10.1002/mas.21814","url":null,"abstract":"<p>Amyloid fibrils, insoluble β-sheets structures that arise from protein misfolding, are associated with several neurodegenerative disorders. Many small molecules have been investigated to prevent amyloid fibrils from forming; however, there are currently no therapeutics to combat these diseases. Mass spectrometry (MS) is proving to be effective for studying the high order structure (HOS) of aggregating proteins and for determining structural changes accompanying protein–inhibitor interactions. When combined with native MS (nMS), gas-phase ion mobility, protein footprinting, and chemical cross-linking, MS can afford regional and sometimes amino acid spatial resolution of the aggregating protein. The spatial resolution is greater than typical low-resolution spectroscopic, calorimetric, and the traditional ThT fluorescence methods used in amyloid research today. High-resolution approaches can struggle when investigating protein aggregation, as the proteins exist as complex oligomeric mixtures of many sizes and several conformations or polymorphs. Thus, MS is positioned to complement both high- and low-resolution approaches to studying amyloid fibril formation and protein–inhibitor interactions. This review covers basics in MS paired with ion mobility, continuous hydrogen-deuterium exchange (continuous HDX), pulsed hydrogen-deuterium exchange (pulsed HDX), fast photochemical oxidation of proteins (FPOP) and other irreversible labeling methods, and chemical cross-linking. We then review the applications of these approaches to studying amyloid-prone proteins with a focus on amyloid beta and alpha-synuclein. Another focus is the determination of protein–inhibitor interactions. The expectation is that MS will bring new insights to amyloid formation and thereby play an important role to prevent their formation.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 4","pages":"782-825"},"PeriodicalIF":6.6,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9427217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How I have learnt to ignore bibliometrics","authors":"František Tureček","doi":"10.1002/mas.21815","DOIUrl":"10.1002/mas.21815","url":null,"abstract":"","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 3","pages":"422-426"},"PeriodicalIF":6.6,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33521491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reminiscence on Frantisek Tureček","authors":"Ivan K. Chu","doi":"10.1002/mas.21817","DOIUrl":"10.1002/mas.21817","url":null,"abstract":"","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 3","pages":"420-421"},"PeriodicalIF":6.6,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33499557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples","authors":"Sayantani Chatterjee, Joseph Zaia","doi":"10.1002/mas.21813","DOIUrl":"10.1002/mas.21813","url":null,"abstract":"<p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the on-going global pandemic of coronavirus disease 2019 (COVID-19) that continues to pose a significant threat to public health worldwide. SARS-CoV-2 encodes four structural proteins namely membrane, nucleocapsid, spike, and envelope proteins that play essential roles in viral entry, fusion, and attachment to the host cell. Extensively glycosylated spike protein efficiently binds to the host angiotensin-converting enzyme 2 initiating viral entry and pathogenesis. Reverse transcriptase polymerase chain reaction on nasopharyngeal swab is the preferred method of sample collection and viral detection because it is a rapid, specific, and high-throughput technique. Alternate strategies such as proteomics and glycoproteomics-based mass spectrometry enable a more detailed and holistic view of the viral proteins and host–pathogen interactions and help in detection of potential disease markers. In this review, we highlight the use of mass spectrometry methods to profile the SARS-CoV-2 proteome from clinical nasopharyngeal swab samples. We also highlight the necessity for a comprehensive glycoproteomics mapping of SARS-CoV-2 from biological complex matrices to identify potential COVID-19 markers.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 1","pages":"193-229"},"PeriodicalIF":6.6,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10112611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}