{"title":"Investigation on effect of cryogenic cooling on the hole-making of CFRP with conventional PCD tool and textured PCD tool","authors":"Yong-sheng Su, Yi-yang Zhu, Cheng Wang, Hao Chu, Wei Jin, Li-meng Wang, Liang Li, Fang-tao Ruan, Xiao-min Qi, Ping Xiao, Zhuan-zhe Zhao","doi":"10.1177/09544054241261112","DOIUrl":"https://doi.org/10.1177/09544054241261112","url":null,"abstract":"Carbon fiber reinforced polymer (CFRP) has obtained the widespread use in significant basic parts owing to its excellent properties. Different methods including the conventional PCD tool using dry machining (CPD), the conventional PCD tool with CO2 cryogenic cooling (CPC), and the textured PCD tool with CO2 cryogenic cooling (TPC), were introduced to investigated their effects on the holes-making performance. Results demonstrated that the obtained average entrance diameter and relative error of different spindle speeds using the CPC were about 4001 to 4005.4 μm and 0.025% to 0.65%, respectively. Dimensional accuracy and surface edge quality of entrance hole can be better improved by the CPC method. It was found that the cryogenic cooling method showed the remarkable effect in improving the anti-adhesion of tools than compared to the dry machining. Additionally, results indicated that the cryogenic cooling resulted in the significant fiber fractures and many pits inside the hole wall and the CPD method can help to improve the inner hole wall quality.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141813715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jorge Muniz, Yufeng Zhang, Daniel Wintersberger, Paulina Ramirez
{"title":"Social systems for future manufacturing framework: An overarching view of people, organization and society","authors":"Jorge Muniz, Yufeng Zhang, Daniel Wintersberger, Paulina Ramirez","doi":"10.1177/09544054241248865","DOIUrl":"https://doi.org/10.1177/09544054241248865","url":null,"abstract":"Drawing on insights from relevant scholarship in the areas of producing engineering, sociology of work and political economy, as well as a series of ‘webinars’ with R&D managers, production managers and trade union representatives conducted between 2021 and 22, we propose an interdisciplinary, multidimensional framework (‘social systems for future manufacturing’) as a means to better understand the shopfloor and societal implications of technological change in the context of the ‘fourth industrial revolution’. Our framework entails three distinct though interrelated levels of analysis (worker, manufacturing, as well as societal), all of which are necessary to engage with in order to understand the implications of digital transformation. We argue that the extent to which employee voice is institutionally embedded at societal level, will have an impact on the way in which new technology will be developed and implemented (namely in a labour-saving or labouraugmenting way). We also discuss relevant factors in terms of workforce skills development at individual and firm level, as well as in terms of national vocational training and development infrastructure, and how these are likely to determine industrial competitiveness in the context of the fourth industrial revolution. Theoretical and managerial implications around work organisation and workforce training are discussed.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141275864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Donghui Li, Tao Zhang, Nan Zhao, Longlong Dong, Mengqi Wu, Guohe Li, Aimin Li
{"title":"Investigation on the thermal-mechanical coupling effect on wear mechanism of high-speed cutting nickel-based superalloy GH4169 with cermet cutting tools","authors":"Donghui Li, Tao Zhang, Nan Zhao, Longlong Dong, Mengqi Wu, Guohe Li, Aimin Li","doi":"10.1177/09544054241249512","DOIUrl":"https://doi.org/10.1177/09544054241249512","url":null,"abstract":"Nickel-based superalloys owes strong high temperature strength and corrosion resistance, and are widely used in aerospace and other fields. Machining of nickel-based superalloy is a typical thermal-mechanical coupling process. A prediction model of cutting force and cutting temperature was established for a orthogonal cutting, and the coupling stress of the cutting force and cutting heat was calculated. The orthogonal cutting experiment of GH4169 was conducted with cermet cutting tool. The cutting force and cutting temperature of prediction model was verified. And the distribution of stress on the rack face and wear of cutting tool were analyzed under different cutting parameters. The wear of cutting tool in the cutting process was mainly the crater wear on the rake face. The wear mechanism of the cutting tool and the wear amount of the crater on the rake face were analyzed based on thermal-mechanical coupling. The research results can provide a theoretical basis for optimizing the design and manufacture of cutting tools and improving the wear resistance of cutting tools.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141280857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High quality 3D printing of low-density polyethylene blends considering the softening effect of polyolefin elastomer","authors":"Yanmeng Gao, Bin Sheng, Lingqin Xia, Shuwei Wang","doi":"10.1177/09544054241254622","DOIUrl":"https://doi.org/10.1177/09544054241254622","url":null,"abstract":"Polyethylene (PE) is one of the most widely used thermoplastics in the polyolefin family. Despite its numerous applications in the industry, particularly in packaging, 3D printing with PE has been a significant challenge that has received little attention. The main obstacles to successful 3D printing with PE are high shrinkage, weak adhesion to the print bed, and weak interlayers. This paper addresses this problem by introducing Polyolefin Elastomer (POE) as an additive in the 3D printing process. Three different POE-LDPE compounds with varying LDPE weight percentages (90%, 70%, and 50%) were 3D printed and analyzed for their mechanical and microstructural properties. The POE and LDPE were blended using the melt mixing method, and the resulting POE-LDPE granules were directly used as input for the FDM machine. The 3D-printed samples were then subjected to DMTA, tensile, compression tests, and SEM imaging. The DMTA results showed that the glass transition temperature of all three samples fell within the range of 71°C to 78°C. Increasing the POE content and decreasing the LDPE amount from 90% to 50% led to a decrease in the storage modulus. In terms of the tensile test results, it was observed that reducing the LDPE amount and increasing the POE content had a toughening effect on the samples, improving their formability and elongation from 1566% for POE-90wt% LDPE to 2112% and 2829% for POE-70wt% LDPE and POE-50wt% LDPE respectively. However, the tensile strength decreased with an increase in the POE amount. For POE-90wt% LDPE, the tensile strength was 14.06 MPa, and for POE-90wt% LDPE, it was just below 13.96 MPa. The compression test revealed that the addition of POE weakened the yield strength of the samples. SEM images demonstrated that the printability of the 3D-printed POE-LDPE samples decreased as the LDPE amount decreased and the POE amount increased. The images also revealed single-phase and miscible blends. These findings suggest the potential emergence of a new, affordable, biocompatible, and recyclable raw material for 3D printing.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141103252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on thermal characteristics modeling of CNC machine tools based on submodel method","authors":"Liang Peng, Leilei Cheng, Liangguo Cheng, Zhenlei Chen","doi":"10.1177/09544054241249210","DOIUrl":"https://doi.org/10.1177/09544054241249210","url":null,"abstract":"To improve the accuracy of thermal characteristics analysis of CNC machine tools, a modeling method for the thermal characteristics of CNC machine tools based on submodel method is proposed in this paper. In this method, the thermal-structural coupling calculation of the feed system and spindle system is initially completed in ABAQUS to obtain temperature and deformation results of the submodels. Subsequently, User Define Function (UDF) in Fluent is used to extract the temperature information from the surface of the submodels. The obtained surface temperature data is then imported into the overall machine model for fluid-structure coupling heat transfer calculation. The model developed in this study takes into account factors such as the dynamic heat generation of the heat source, the cooling fan system, and the secondary heat source effect of the cutting fluid. To validate the approach, a thermal characteristics experiment was conducted, and the research results demonstrate that the thermal analysis model established in this paper exhibits both high accuracy and efficiency. During the 180 min of machine operation, the thermal displacement between the tool tip and the workpiece increased. The maximum thermal deformation of the machine tool tip was 40.83 [Formula: see text], primarily observed in the X and Y directions.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141116801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automated deployment mechanism of containerized communication micro-services for smart manufacturing applications","authors":"Hsiang-Yu Chuang, Shang-Liang Chen","doi":"10.1177/09544054241249777","DOIUrl":"https://doi.org/10.1177/09544054241249777","url":null,"abstract":"To swiftly and reliably monitor various information and the operational status of machinery across large smart manufacturing sites, this study introduces the use of LPWAN multi-mode network communication technology. This technology can automatically switch between LoRa and NB-IoT modes based on signal strength to ensure communication stability. Through wireless communication technologies such as LoRa and NB-IoT, the status information of machinery can be transmitted back to the cloud in real-time, facilitating user management. However, LPWAN multi-mode network communication modules often adopt a monolithic architecture, making maintenance and upgrades more difficult. When an application within the module needs upgrading, not only must the consistency between the development environment and the execution environment be ensured, but also a significant amount of time and resources must be spent on on-site deployment. With the development of cloud computing and virtualization technologies, containerized microservices architecture, which focuses on replacing functional modules with services, is set to become the mainstream for future industrial applications. Therefore, this study proposes a remote communication architecture based on container and microservices technologies. Utilizing the concept of microservices, this architecture divides LPWAN multi-mode network communication modules based on different functionalities and offers them to users in a more flexible service manner through containerization technology. This study also designs a mechanism to automate the entire service construction process, followed by the implementation of communication services’ automatic deployment through container management tools. Compared to manual deployment, this significantly reduces the waste of time and human resources. Finally, this study uses a large mobile pumping unit as a practical application case to verify the feasibility of the proposed architecture. In the context of flood prevention and disaster relief, large mobile pumping units are widely used to solve flooding issues. These pumps are often deployed in dangerous areas with poor signal reception, thereby also validating the value of the proposed architecture.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141114569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of SS-316L and nickel-based interface powders on joint characteristics of microwave welded SS-316L plates","authors":"Kadapa Vijaya Bhaskar Reddy, Gudipadu Venkatesh, Radha Raman Mishra","doi":"10.1177/09544054241249213","DOIUrl":"https://doi.org/10.1177/09544054241249213","url":null,"abstract":"Microwave energy has been exploited as a rapid and volumetric heating source in various manufacturing applications, such as microwave joining. This study used stainless steel (SS-316L) plates to be microwave-joined at 2.45 GHz. The microwave hybrid heating (MHH) technique was used to prepare joints inside a microwave applicator using nickel-based (EWAC 1004EN) and SS-316L interfacing powders at 900 W. Microstructural and mechanical characterizations of the developed joints were performed to understand the effect of the interface powder on weld quality. Microstructural observations revealed adequate metallurgical bonding between interfacing powders and bulk metal with columnar and dendritic grains (EWAC-based joint) and equiaxed grains (SS-316L-based joint). The phase analysis revealed the presence of intermetallic phases such as iron-nickel, chromium carbide, and chromium iron carbide in EWAC-based joint and iron-nickel, nickel-chromium, and chromium carbide in SS-316L-based joint, which contribute to enhanced joint microhardness compared to base alloys. A larger grain size, more low-angle boundaries, and higher misorientation angles were found in the EWAC-based joint. Furthermore, the average ultimate tensile strength of SS-316L-based joints was 26% higher, with a 6.9% enhanced elongation, than that of EWAC-based joints. The EWAC-based joint exhibited better corrosion resistance than that of SS-316L-based joint.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141116755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strength and formability improvement of ECARed aluminum alloy 6061 sheets using the artificial aging heat treatment","authors":"Amir R. Gharib, F. Biglari","doi":"10.1177/09544054241253032","DOIUrl":"https://doi.org/10.1177/09544054241253032","url":null,"abstract":"In the current research, the experimental investigation of the mechanical characteristics of 6061 aluminum alloy, which was subjected to Equal Channel Angular Rolling (ECAR) – A Severe Plastic Deformation Process – and artificial aging heat treatment, has been discussed. By performing the ECAR, the strength of the material increases, but the formability will be reduced. Consequently, the usage of this alloy has been limited. The artificial aging heat treatment process has been proposed after the ECAR operation, and the strength, hardness, and formability of the material have been investigated. In this regard, remarkable results were obtained. By controlling the aging time and temperature on the ECAR piece, not only the strength increased but also the ductility increased. Moreover, an artificial neural network was used to find the optimal aging time and temperature. Finally, the best aging time and temperature ranges to achieve the most desirable mechanical properties were provided using the neural network. The result show 150% increase in strength and 50% in formability by performing controlled-artificial aging heat treatment with ECAR process.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141114935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new approach for analyzing machining-induced damage in correlation with tool wear during dry drilling of CFRP/Ti stacks","authors":"Vijayathithan Mathiyazhagan, Anil Meena","doi":"10.1177/09544054241249780","DOIUrl":"https://doi.org/10.1177/09544054241249780","url":null,"abstract":"The machining process of Carbon Fiber Reinforced Polymer/Titanium (CFRP/Ti) stacks presents significant challenges owing to the inherent inhomogeneity of CFRP and the low thermal conductivity of Ti. The drilled hole surface can experience machining-induced damage, such as delamination, fiber pull-out, and burr formation. The present study aimed to examine the influence of cutting parameters and coatings, as well as tool wear mechanisms, on the occurrence of machining-induced damage in CFRP/Ti stacks during dry drilling. Moreover, a new method called MATLAB-Assisted Image Processing (MAIP) is introduced to assess machining-induced damage, specifically delamination and burr formation, in the context of CFRP/Ti stack drilling. The use of advanced MATLAB-assisted image processing improves the precision of MAIP. The coefficient of repeatability is 0.001394. TiAlN-coated drills offer notable advantages, resulting in a 13% decrease in the maximum thrust force for CFRP and a 10% reduction for Ti. Furthermore, there is an 11% decrease in delamination compared to a tool that lacks a coating. The experimental findings revealed a significant correlation between machining-induced damage and the mechanisms of tool wear.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140962246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Blockchain design for optimal joint production and maintenance over multiple periods for oil-filling production lines","authors":"A. Al-Refaie, Ahmad Al-Hawadi","doi":"10.1177/09544054241252854","DOIUrl":"https://doi.org/10.1177/09544054241252854","url":null,"abstract":"Joint maintenance and production planning result in enhanced system efficiency and a significant reduction in expensive costs. Therefore, this research proposed an integrated blockchain design of two optimization models for the joint scheduling and sequencing of production orders and maintenance jobs over multiple periods with probabilistic and stochastic parameters for the oil-filling process. In the scheduling model, the objective function was to minimize total production and maintenance costs. Further, the sequencing model aimed to minimize the total overtime cost and the sum start times of jobs and orders. The proposed models were implemented on five production lines of five-liter lube oil bottles. Results showed that the developed optimization models effectively achieved concurrent production and maintenance planning at minimal total cost. In practice, this results in effective resource utilization, and saving costly production and maintenance costs. In conclusion, the developed blockchain design is valuable in developing, managing, and controlling optimal joint production and maintenance planning of oil-filling production lines.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141126398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}