Bo Qin, Yongqing Wang, Kuo Liu, Shi Qiao, Mengmeng Niu, Yeming Jiang
{"title":"A tool wear monitoring approach based on triplet long short-term memory neural networks","authors":"Bo Qin, Yongqing Wang, Kuo Liu, Shi Qiao, Mengmeng Niu, Yeming Jiang","doi":"10.1177/09544054231206589","DOIUrl":null,"url":null,"abstract":"Advancements in artificial intelligence have significantly improved the monitoring of tool wear in machining processes, thereby enhancing the overall quality of machining. However, the scarcity of tool wear samples poses a challenge to the enhancement of model precision. This necessitates the exploration of monitoring techniques that are effective even with small sample sizes. A method involving a triplet long short-term memory (LSTM) neural network is introduced, which offers the potential for superior accuracy even with limited training data. During the machining process, spindle vibrations are captured using a triaxial accelerometer. The raw data is processed by a triplet network, which uses an LSTM as the base model, thereby facilitating the aggregation within classes and separation between classes. A soft-max classification layer is subsequently integrated into the model, which enables the precise determination of tool wear states. The base model is optimized using a Genetic Algorithm to ensure model efficiency and accuracy before it is expanded into a triplet network. Experimental results from a vertical machining center confirm that the triplet LSTM network offers superior accuracy compared to a standard LSTM network, even when the sample size is small.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"120 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054231206589","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in artificial intelligence have significantly improved the monitoring of tool wear in machining processes, thereby enhancing the overall quality of machining. However, the scarcity of tool wear samples poses a challenge to the enhancement of model precision. This necessitates the exploration of monitoring techniques that are effective even with small sample sizes. A method involving a triplet long short-term memory (LSTM) neural network is introduced, which offers the potential for superior accuracy even with limited training data. During the machining process, spindle vibrations are captured using a triaxial accelerometer. The raw data is processed by a triplet network, which uses an LSTM as the base model, thereby facilitating the aggregation within classes and separation between classes. A soft-max classification layer is subsequently integrated into the model, which enables the precise determination of tool wear states. The base model is optimized using a Genetic Algorithm to ensure model efficiency and accuracy before it is expanded into a triplet network. Experimental results from a vertical machining center confirm that the triplet LSTM network offers superior accuracy compared to a standard LSTM network, even when the sample size is small.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.