{"title":"Fabric defect detection using AI and machine learning for lean and automated manufacturing of acoustic panels","authors":"Wai Hin Cheung, Qingping Yang","doi":"10.1177/09544054231209782","DOIUrl":null,"url":null,"abstract":"Fabric defects in the conventional manufacturing of acoustic panels are detected via manual visual inspections, which are prone to problems due to human errors. Implementing an automated fabric inspection system can improve productivity and increase product quality. In this work, advanced machine learning (ML) techniques for fabric defect detection are reviewed, and two deep learning (DL) models are developed using transfer learning based on pre-trained convolutional neural network (CNN) architectures. The dataset used for this work consists of 1800 images with six different classes, made up of one class of fabric in good condition and five classes of fabric defects. The model design process involves pre-processing of the images, modification of the neural network layers, as well as selection and optimisation of the network’s hyperparameters. The average accuracies of the two CNN models developed in this work, which used the GoogLeNet and the ResNet50 architectures, are 89.84% and 95.45%, respectively, showing statistically significant results. The interpretability of the models is discussed using the Grad-CAM technique. Relevant image acquisition hardware requirements are also put forward for integration with the detection software, which can enable successful deployment of the model for the automated fabric inspection.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"47 S223","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544054231209782","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Fabric defects in the conventional manufacturing of acoustic panels are detected via manual visual inspections, which are prone to problems due to human errors. Implementing an automated fabric inspection system can improve productivity and increase product quality. In this work, advanced machine learning (ML) techniques for fabric defect detection are reviewed, and two deep learning (DL) models are developed using transfer learning based on pre-trained convolutional neural network (CNN) architectures. The dataset used for this work consists of 1800 images with six different classes, made up of one class of fabric in good condition and five classes of fabric defects. The model design process involves pre-processing of the images, modification of the neural network layers, as well as selection and optimisation of the network’s hyperparameters. The average accuracies of the two CNN models developed in this work, which used the GoogLeNet and the ResNet50 architectures, are 89.84% and 95.45%, respectively, showing statistically significant results. The interpretability of the models is discussed using the Grad-CAM technique. Relevant image acquisition hardware requirements are also put forward for integration with the detection software, which can enable successful deployment of the model for the automated fabric inspection.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.