Human–machine fusion–based operational complexity measurement approach to assembly lines for smart manufacturing

IF 1.9 3区 工程技术 Q3 ENGINEERING, MANUFACTURING
Guoliang Fan, Zuhua Jiang, Hao Zheng, Yicong Gao, Shanhe Lou
{"title":"Human–machine fusion–based operational complexity measurement approach to assembly lines for smart manufacturing","authors":"Guoliang Fan, Zuhua Jiang, Hao Zheng, Yicong Gao, Shanhe Lou","doi":"10.1177/09544054231209158","DOIUrl":null,"url":null,"abstract":"Complexity is an important quantification of uncertain operation in assembly lines and the key source of invisible uncertainty problems in smart manufacturing. The purpose of this paper is to propose a complexity measurement approach to assess the complexity of assembly lines integrating humans, machines and configurations. First, the complexity models of the three states of the operation related to humans and machines are built based on information entropy and the operation time model. Then, an operational complexity model is built at the station level; it is constructed with a single station, parallel stations and sublines based on Kolmogorov entropy. The model quantitatively describes the cumulative complexity along with the material flow. Furthermore, the complexity model of the overall system is given, and the Lempel–Ziv algorithm is applied to measure the complexity flow along with the stations. The complexity equilibrium index is derived to quantify the balancing degree among the stations. The model incorporates uncertain operation into system modeling to quantify the influence of uncertainties on the state of the assembly line. An engine assembly line is used to validate that the approach can measure the complexity from operation to station to system.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"213 4","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544054231209158","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Complexity is an important quantification of uncertain operation in assembly lines and the key source of invisible uncertainty problems in smart manufacturing. The purpose of this paper is to propose a complexity measurement approach to assess the complexity of assembly lines integrating humans, machines and configurations. First, the complexity models of the three states of the operation related to humans and machines are built based on information entropy and the operation time model. Then, an operational complexity model is built at the station level; it is constructed with a single station, parallel stations and sublines based on Kolmogorov entropy. The model quantitatively describes the cumulative complexity along with the material flow. Furthermore, the complexity model of the overall system is given, and the Lempel–Ziv algorithm is applied to measure the complexity flow along with the stations. The complexity equilibrium index is derived to quantify the balancing degree among the stations. The model incorporates uncertain operation into system modeling to quantify the influence of uncertainties on the state of the assembly line. An engine assembly line is used to validate that the approach can measure the complexity from operation to station to system.
基于人机融合的智能制造装配线操作复杂性测量方法
复杂性是装配线不确定性操作的重要量化指标,也是智能制造中隐形不确定性问题的关键来源。本文的目的是提出一种复杂性测量方法来评估集成了人、机器和配置的装配线的复杂性。首先,基于信息熵和操作时间模型,建立了人机操作三种状态的复杂性模型;在此基础上,建立了站级运营复杂性模型;它基于柯尔莫哥洛夫熵,由单站、平行站和子站组成。该模型定量地描述了随物料流累积的复杂性。在此基础上,建立了整个系统的复杂性模型,并利用Lempel-Ziv算法对系统的复杂度流进行了测量。推导出复杂性平衡指标,量化各台站之间的平衡程度。该模型将不确定性操作纳入系统建模,以量化不确定性对装配线状态的影响。以某发动机装配线为例,验证了该方法可以测量从操作到工位到系统的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
30.80%
发文量
167
审稿时长
5.1 months
期刊介绍: Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed. Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing. Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信