{"title":"The pathophysiological role of dihydroceramide desaturase in the nervous system","authors":"Fei-Yang Tzou , Thorsten Hornemann , Jui-Yu Yeh , Shu-Yi Huang","doi":"10.1016/j.plipres.2023.101236","DOIUrl":"10.1016/j.plipres.2023.101236","url":null,"abstract":"<div><p><span>Dihydroceramide desaturase 1 (DEGS1) converts dihydroceramide (dhCer) to ceramide (Cer) by inserting a C4-C5 </span><em>trans</em> (∆4E) double bond into the sphingoid backbone. Low DEGS activity causes accumulation of dhCer and other dihydrosphingolipid species. Although dhCer and Cer are structurally very similar, their imbalances can have major consequences both <em>in vitro</em> and <em>in vivo</em>. Mutations in the human <em>DEGS1</em><span><span><span> gene are known to cause severe neurological defects, such as hypomyelinating leukodystrophy. Likewise, inhibition of DEGS1 activity in fly and zebrafish models causes dhCer accumulation and subsequent neuronal dysfunction, suggesting that DEGS1 activity plays a conserved and critical role in the nervous system. Dihydrosphingolipids and their desaturated counterparts are known to control various essential processes, including autophagy, exosome biogenesis, ER stress<span>, cell proliferation, and cell death. Furthermore, </span></span>model membranes<span><span> with either dihydrosphingolipids or sphingolipids exhibit different biophysical properties, including </span>membrane permeability<span> and packing, thermal stability, and </span></span></span>lipid diffusion. However, the links between molecular properties, </span><em>in vivo</em> functional data, and clinical manifestations that underlie impaired DEGS1 function remain largely unresolved. In this review, we summarize the known biological and pathophysiological roles of dhCer and its derivative dihydrosphingolipid species in the nervous system, and we highlight several possible disease mechanisms that warrant further investigation.</p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"91 ","pages":"Article 101236"},"PeriodicalIF":13.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10605673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pathophysiological roles and applications of glycosphingolipids in the diagnosis and treatment of cancer diseases","authors":"Xuefeng Jin , Guang-Yu Yang","doi":"10.1016/j.plipres.2023.101241","DOIUrl":"10.1016/j.plipres.2023.101241","url":null,"abstract":"<div><p>Glycosphingolipids (GSLs) are major amphiphilic glycolipids present on the surface of living cell membranes. They have important biological functions, including maintaining plasma membrane stability, regulating signal transduction, and mediating cell recognition and adhesion. Specific GSLs and related enzymes are abnormally expressed in many cancer diseases and affect the malignant characteristics of tumors. The regulatory roles of GSLs in signaling pathways suggest that they are involved in tumor pathogenesis. GSLs have therefore been widely studied as diagnostic markers of cancer diseases and important targets of immunotherapy. This review describes the tumor-related biological functions of GSLs and systematically introduces recent progress in using diverse GSLs and related enzymes to diagnose and treat tumor diseases. Development of drugs and biomarkers for personalized cancer therapy based on GSL structure is also discussed. These advances, combined with recent progress in the preparation of GSLs derivatives through synthetic biology technologies, suggest a strong future for the use of customized GSL libraries in treating human diseases.</p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"91 ","pages":"Article 101241"},"PeriodicalIF":13.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10250739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovanni Musso , Francesca Saba , Maurizio Cassader , Roberto Gambino
{"title":"Lipidomics in pathogenesis, progression and treatment of nonalcoholic steatohepatitis (NASH): Recent advances","authors":"Giovanni Musso , Francesca Saba , Maurizio Cassader , Roberto Gambino","doi":"10.1016/j.plipres.2023.101238","DOIUrl":"10.1016/j.plipres.2023.101238","url":null,"abstract":"<div><p>Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease affecting up to 30% of the general adult population. NAFLD encompasses a histological spectrum ranging from pure steatosis to non-alcoholic steatohepatitis (NASH). NASH can progress to cirrhosis and is becoming the most common indication for liver transplantation, as a result of increasing disease prevalence and of the absence of approved treatments. Lipidomic readouts of liver blood and urine samples from experimental models and from NASH patients disclosed an abnormal lipid composition and metabolism. Collectively, these changes impair organelle function and promote cell damage, necro-inflammation and fibrosis, a condition termed lipotoxicity. We will discuss the lipid species and metabolic pathways leading to NASH development and progression to cirrhosis, as well as and those species that can contribute to inflammation resolution and fibrosis regression. We will also focus on emerging lipid-based therapeutic opportunities, including specialized proresolving lipid molecules and macrovesicles contributing to cell-to-cell communication and NASH pathophysiology.</p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"91 ","pages":"Article 101238"},"PeriodicalIF":13.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10623403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tomohiro Kimura , Atsuko K. Kimura , Richard M. Epand
{"title":"Systematic crosstalk in plasmalogen and diacyl lipid biosynthesis for their differential yet concerted molecular functions in the cell","authors":"Tomohiro Kimura , Atsuko K. Kimura , Richard M. Epand","doi":"10.1016/j.plipres.2023.101234","DOIUrl":"10.1016/j.plipres.2023.101234","url":null,"abstract":"<div><p><span><span>Plasmalogen<span> is a major phospholipid of </span></span>mammalian cell membranes. Recently it is becoming evident that the </span><em>sn</em><span><span>-1 vinyl-ether linkage in plasmalogen, contrasting to the ester linkage in the counterpart diacyl glycerophospholipid, yields differential molecular characteristics for these </span>lipids<span> especially related to hydrocarbon-chain order, so as to concertedly regulate biological membrane<span> processes. A role played by NMR in gaining information in this respect, ranging from molecular to tissue levels, draws particular attention. We note here that a broad range of enzymes in </span></span></span><em>de novo</em> synthesis pathway of plasmalogen commonly constitute that of diacyl glycerophospholipid. This fact forms the basis for systematic crosstalk that not only controls a quantitative balance between these lipids, but also senses a defect causing loss of lipid in either pathway for compensation by increase of the counterpart lipid. However, this inherent counterbalancing mechanism paradoxically amplifies imbalance in differential effects of these lipids in a diseased state on membrane processes. While sharing of enzymes has been recognized, it is now possible to overview the crosstalk with growing information for specific enzymes involved. The overview provides a fundamental clue to consider cell and tissue type-dependent schemes in regulating membrane processes by plasmalogen and diacyl glycerophospholipid in health and disease.</p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"91 ","pages":"Article 101234"},"PeriodicalIF":13.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10249841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhengbin Zhang , Liwen Zhu , Ziqian Wang , Ning Hua , Shunying Hu , Yundai Chen
{"title":"Can the new adipokine asprosin be a metabolic troublemaker for cardiovascular diseases? A state-of-the-art review","authors":"Zhengbin Zhang , Liwen Zhu , Ziqian Wang , Ning Hua , Shunying Hu , Yundai Chen","doi":"10.1016/j.plipres.2023.101240","DOIUrl":"10.1016/j.plipres.2023.101240","url":null,"abstract":"<div><p>Adipokines play a significant role in cardiometabolic diseases. Asprosin, a newly discovered adipokine<span>, was first identified as a glucose-raising protein hormone. Asprosin also stimulates appetite and regulates glucose and lipid metabolism. Its identified receptors so far include Olfr734 and Ptprd. Clinical studies have found that asprosin may be associated with cardiometabolic diseases. Asprosin may have diagnostic and therapeutic potential in obesity, diabetes, metabolic syndrome and atherosclerotic cardiovascular diseases. Herein, the structure, receptors, and functions of asprosin and its relationship with cardiometabolic diseases are summarized based on recent findings.</span></p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"91 ","pages":"Article 101240"},"PeriodicalIF":13.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10256947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lipid metabolism around the body clocks","authors":"Volodymyr Petrenko , Flore Sinturel , Howard Riezman , Charna Dibner","doi":"10.1016/j.plipres.2023.101235","DOIUrl":"10.1016/j.plipres.2023.101235","url":null,"abstract":"<div><p>Lipids play important roles in energy metabolism along with diverse aspects of biological membrane structure, signaling and other functions. Perturbations of lipid metabolism are responsible for the development of various pathologies comprising metabolic syndrome, obesity, and type 2 diabetes. Accumulating evidence suggests that circadian oscillators, operative in most cells of our body, coordinate temporal aspects of lipid homeostasis. In this review we summarize current knowledge on the circadian regulation of lipid digestion, absorption, transportation, biosynthesis, catabolism, and storage. Specifically, we focus on the molecular interactions between functional clockwork and biosynthetic pathways of major lipid classes comprising cholesterol, fatty acids, triacylglycerols, glycerophospholipids, glycosphingolipids, and sphingomyelins. A growing body of epidemiological studies associate a socially imposed circadian misalignment common in modern society with growing incidence of metabolic disorders, however the disruption of lipid metabolism rhythms in this connection has only been recently revealed. Here, we highlight recent studies that unravel the mechanistic link between intracellular molecular clocks, lipid homeostasis and development of metabolic diseases based on animal models of clock disruption and on innovative translational studies in humans. We also discuss the perspectives of manipulating circadian oscillators as a potentially powerful approach for preventing and managing metabolic disorders in human patients.</p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"91 ","pages":"Article 101235"},"PeriodicalIF":13.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10623385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael A. Crawford , Andrew J. Sinclair , Barbara Hall , Enitan Ogundipe , Yiqun Wang , Dimitrios Bitsanis , Ovrang B. Djahanbakhch , Laurence Harbige , Kebreab Ghebremeskel , Ivan Golfetto , Therishnee Moodley , Ahmed Hassam , AnnieBelle Sassine , Mark R. Johnson
{"title":"The imperative of arachidonic acid in early human development","authors":"Michael A. Crawford , Andrew J. Sinclair , Barbara Hall , Enitan Ogundipe , Yiqun Wang , Dimitrios Bitsanis , Ovrang B. Djahanbakhch , Laurence Harbige , Kebreab Ghebremeskel , Ivan Golfetto , Therishnee Moodley , Ahmed Hassam , AnnieBelle Sassine , Mark R. Johnson","doi":"10.1016/j.plipres.2023.101222","DOIUrl":"10.1016/j.plipres.2023.101222","url":null,"abstract":"<div><p>This review is about the role of arachidonic acid (ArA) in foetal and early growth and development. In 1975 and ‘76, we reported the preferential incorporation of ArA into the developing brain of rat pups, its conservation as a principal component in the brains of 32 mammalian species and the high proportion delivered by the human placenta for foetal nutrition, compared to its parent linoleic acid (LA). ArA is quantitatively the principal acyl component of membrane lipids from foetal red cells, mononuclear cells, astrocytes, endothelium, and placenta. Functionally, we present evidence that ArA, but not DHA, relaxes the foetal mesenteric arteries. The placenta biomagnifies ArA, doubling the proportion of the maternal level in cord blood. The proportions of ArA and its allies (di-homo-gamma-linolenic acid (DGLA), adrenic acid and ω6 docosapentaenoic acid) are similar or higher than the total of ω3 fatty acids in human milk, maintaining the abundant supply to the developing infant. Despite the evidence of the importance of ArA, the European Food Standard Agency, in 2014 rejected the joint FAO and WHO recommendation on the inclusion of ArA in infant formula, although they recommended DHA. The almost universal dominance of ArA in the membrane phosphoglycerides during human organogenesis and prenatal growth suggests that the importance of ArA and its allies in reproductive biology needs to be re-evaluated urgently.</p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"91 ","pages":"Article 101222"},"PeriodicalIF":13.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10260260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sergio Oddi , Maria Teresa Fiorenza , Mauro Maccarrone
{"title":"Endocannabinoid signaling in adult hippocampal neurogenesis: A mechanistic and integrated perspective","authors":"Sergio Oddi , Maria Teresa Fiorenza , Mauro Maccarrone","doi":"10.1016/j.plipres.2023.101239","DOIUrl":"10.1016/j.plipres.2023.101239","url":null,"abstract":"<div><p>Dentate gyrus of the hippocampus continuously gives rise to new neurons, namely, adult-born granule cells, which contribute to conferring plasticity to the mature brain throughout life. Within this neurogenic region, the fate and behavior of neural stem cells (NSCs) and their progeny result from a complex balance and integration of a variety of cell-autonomous and cell-to-cell-interaction signals and underlying pathways. Among these structurally and functionally diverse signals, there are endocannabinoids (eCBs), the main brain retrograde messengers. These pleiotropic bioactive lipids can directly and/or indirectly influence adult hippocampal neurogenesis (AHN) by modulating, both positively and negatively, multiple molecular and cellular processes in the hippocampal niche, depending on the cell type or stage of differentiation. Firstly, eCBs act directly as cell-intrinsic factors, cell-autonomously produced by NSCs following their stimulation. Secondly, in many, if not all, niche-associated cells, including some local neuronal and nonneuronal elements, the eCB system indirectly modulates the neurogenesis, linking neuronal and glial activity to regulating distinct stages of AHN. Herein, we discuss the crosstalk of the eCB system with other neurogenesis-relevant signal pathways and speculate how the hippocampus-dependent neurobehavioral effects elicited by (endo)cannabinergic medications are interpretable in light of the key regulatory role that eCBs play on AHN.</p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"91 ","pages":"Article 101239"},"PeriodicalIF":13.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10256909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johannes Burtscher , Giuseppe Pepe , Niran Maharjan , Nathan Riguet , Alba Di Pardo , Vittorio Maglione , Grégoire P. Millet
{"title":"Sphingolipids and impaired hypoxic stress responses in Huntington disease","authors":"Johannes Burtscher , Giuseppe Pepe , Niran Maharjan , Nathan Riguet , Alba Di Pardo , Vittorio Maglione , Grégoire P. Millet","doi":"10.1016/j.plipres.2023.101224","DOIUrl":"10.1016/j.plipres.2023.101224","url":null,"abstract":"<div><p>Huntington disease (HD) is a debilitating, currently incurable disease. Protein aggregation and metabolic deficits are pathological hallmarks but their link to neurodegeneration and symptoms remains debated.</p><p>Here, we summarize alterations in the levels of different sphingolipids in an attempt to characterize sphingolipid patterns specific to HD, an additional molecular hallmark of the disease. Based on the crucial role of sphingolipids in maintaining cellular homeostasis, the dynamic regulation of sphingolipids upon insults and their involvement in cellular stress responses, we hypothesize that maladaptations or blunted adaptations, especially following cellular stress due to reduced oxygen supply (hypoxia) contribute to the development of pathology in HD. We review how sphingolipids shape cellular energy metabolism and control proteostasis and suggest how these functions may fail in HD and in combination with additional insults. Finally, we evaluate the potential of improving cellular resilience in HD by conditioning approaches (improving the efficiency of cellular stress responses) and the role of sphingolipids therein.</p><p>Sphingolipid metabolism is crucial for cellular homeostasis and for adaptations following cellular stress, including hypoxia. Inadequate cellular management of hypoxic stress likely contributes to HD progression, and sphingolipids are potential mediators. Targeting sphingolipids and the hypoxic stress response are novel treatment strategies for HD.</p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"90 ","pages":"Article 101224"},"PeriodicalIF":13.6,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9632526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism","authors":"Frank W. Pfrieger","doi":"10.1016/j.plipres.2023.101225","DOIUrl":"10.1016/j.plipres.2023.101225","url":null,"abstract":"<div><p>Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named \"Niemann-Pick\" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the <em>sphingomyelin phosphodiesterase 1</em> (<em>SMPD1</em>) and <em>NPC intracellular cholesterol transporter 1</em> (<em>NPC1</em>) or <em>NPC intracellular cholesterol transporter 2</em> (<em>NPC2</em>) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.</p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"90 ","pages":"Article 101225"},"PeriodicalIF":13.6,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9683084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}