{"title":"Dissimilar welding between Cu–6Al–2Ni alloy and stainless steel 316L using continuous ytterbium YAG laser","authors":"Nathan Haglon, Rodolphe Bolot, Iryna Tomashchuk, Alexandre Mathieu, Sébastien Lafaye","doi":"10.1177/14644207241245264","DOIUrl":"https://doi.org/10.1177/14644207241245264","url":null,"abstract":"The Cu–6Al–2Ni alloy has much higher ultimate tensile strength compared to pure copper and may potentially replace it in the dissimilar joints between titanium alloys and stainless steels. Laser welding of aluminum bronze to stainless steel has not been reported in the scientific literature, which motivated the present weldability study of Cu–6Al–2Ni/316L dissimilar joint with a continuous ytterbium Yb:YAG laser. Different laser spot offsets from the joint line were selected in order to produce the joints with various dilutions of welded materials. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) probe and X-ray diffraction (XRD) analyses of the melted zones were performed, along with microhardness measurements and tensile testing. The phase evolution in the obtained microstructures was evaluated using Thermo-Calc software. For the dilutions ranging from 23 to 63 at.% Cu, the melted zones showed globular microstructures with primary and secondary phase separation due to the miscibility gap existing in the Cu–Fe system. Lower Cu contents resulted in cellular γ-Fe structures with rare globular Cu-rich inclusions. The XRD analysis indicated the presence of ∼10% of ternary AlFe<jats:sub>2</jats:sub>Ni phase, however, it did not harm the mechanical properties of the welds. According to Thermo-Calc, this phase is formed from γ-Fe during the cooling process. Microhardness measurements did not indicate the embrittlement of the melted zones, which can be explained by the submicronic dispersion of AlFe<jats:sub>2</jats:sub>Ni. The welds exhibited a ductile fracture in Cu–6Al–2Ni at ultimate tensile strength of 350–420 MPa in a wide range of laser offsets, which is much higher than previously reported results for pure copper/316L joints.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140576178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Kathiresan, R Jose Immanuel, Vasudevan Rajamohan
{"title":"Enhancing crashworthiness characteristics of modified hexagonal honeycomb structural panels through stretching and bending of ribs","authors":"M Kathiresan, R Jose Immanuel, Vasudevan Rajamohan","doi":"10.1177/14644207241245857","DOIUrl":"https://doi.org/10.1177/14644207241245857","url":null,"abstract":"The effects of stretching and bending of concave, convex, and horizontal ribs on the energy absorption characteristics of modified hexagonal honeycomb structural panels are investigated under in-plane quasi-static compression loading conditions. In this regard, five hierarchical modified structural panel configurations were fabricated using polylactic acid material (PLA) via a fused filament 3D printer, ensuring uniform wall thickness in the 1.5–2 mm range. The panels included the regular hexagonal panel (RHP), regular hexagonal panel with concave rib (RHCP), regular hexagonal panel with convex rib (RHXP), regular hexagonal panel with concave and horizontal ribs (RHCRP), and regular hexagonal panel with convex and horizontal ribs (RHXRP). In-plane quasi-static compressive loading tests were conducted to analyze crush resistance characteristics, and buckling modes of the modified honeycomb panels were examined through experimental and finite element analysis procedures. The result indicates that the specific energy absorption capacity (SEA) of RHXRP is increasing significantly compared to the SEA capacity of other categories of the structures. The changes in failure modes and increased crush energy absorption characteristics of modified RHP with the introduction of concave, convex, and horizontal ribs are elaborated.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140576185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vinzenz Ginster, Maximilian Klaus Heym, Christoph Jürgen Anton Beier, Maike Epperlein, Alexander Schiebahn, Uwe Reisgen
{"title":"Curing of epoxy adhesives between thin metal foils by means of inductive heating","authors":"Vinzenz Ginster, Maximilian Klaus Heym, Christoph Jürgen Anton Beier, Maike Epperlein, Alexander Schiebahn, Uwe Reisgen","doi":"10.1177/14644207241245256","DOIUrl":"https://doi.org/10.1177/14644207241245256","url":null,"abstract":"Metal foils are being widely used, from the chemical or electronics sector to household appliances. The joining of these foils by adhesive bonding is often the preferred method due to discolouring and warping under the thermal stresses of other joining methods, such as welding. However, long curing times are a disadvantage of adhesive bonding compared to welding. The use of electromagnetic induction is a promising solution for accelerated curing. This work investigates induction heating for accelerated curing of 1-C epoxy adhesives for bonding of thin nickel foils. Process parameters for rapid curing of the adhesives were determined based on reaction kinetics using differential scanning calorimetry measurements. According to those results peel test specimens were fabricated, and the peel resistance was evaluated using a 90° peel load.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140576165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High strain rate response of ABS-M30i-based 3D printed, bio-inspired, bovine bone structure","authors":"Ali Imran Ansari, Nazir Ahmad Sheikh, Navin Kumar","doi":"10.1177/14644207241244731","DOIUrl":"https://doi.org/10.1177/14644207241244731","url":null,"abstract":"To investigate osteoporosis caused by aging and the dynamic behavior of male bovine trabecular bone, three age groups of male bovine trabecular bone were chosen, and micro-computed tomography (CT) analysis was performed to develop an image-based bio-inspired computer-aided design (CAD) model of the bone structure. Further experimental and computational studies were carried out to examine the rate-dependent behavior and compressive energy-absorbing capacity of the structure as a function of age. To evaluate this study, a micro-CT-based CAD model of the structure was 3D printed using ABS-M30i material and subjected to quasi-static compression (low strain rate) and high strain rate (split Hopkinson pressure bar) compression. The findings show that 3D-printed bovine structures have distinct high-rate dependence at strain rates greater than 430 s<jats:sup>−1</jats:sup>, as well as sensitivity to strain rate in terms of peak stress, plateau stress, and energy absorption capacity. Using rate-dependent properties, the Johnson–Cook damage plasticity model was used in computational analysis to explain the dynamic behavior of bone due to osteoporosis. Overall, there is good agreement between the numerical simulations and the experimental data, which was obtained by verifying and validating the model against the experimental results.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali Aziz, Ditho Pulungan, Afdhal, L. Gunawan, T. Dirgantara
{"title":"Crashworthiness performance of double-hat column made of anisotropic sheet metals under axial impact load","authors":"Ali Aziz, Ditho Pulungan, Afdhal, L. Gunawan, T. Dirgantara","doi":"10.1177/14644207241244528","DOIUrl":"https://doi.org/10.1177/14644207241244528","url":null,"abstract":"This study aims to observe the crashworthiness performance of a double-hat column constructed from anisotropic sheet metals under axial impact conditions. The predicted crashworthiness parameters obtained from numerical simulations were compared with experimental data. Anisotropy was discerned through the examination of three material orientations. The effects of viscoplasticity were rigorously investigated under both quasi-static and dynamic loading conditions. Anisotropy notably exerted a pronounced influence on crucial metrics such as mean crushing force, maximum crushing force, and specific energy absorption. Furthermore, the viscoplastic behavior of the column substantially augmented the structural response, particularly under dynamic loading scenarios. Notably, the anisotropic-viscoplastic model exhibited superior accuracy compared to its isotropic counterpart, thereby underscoring its efficacy in capturing intricate material characteristics. This study underscores the critical significance of accounting for geometric imperfections to ensure precise predictions of deformation shapes and crashworthiness performance.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140746960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomimetic design and fabrication of thermally induced radial gradient shape memory scaffolds using fused deposition modeling (FDM) for bone tissue engineering","authors":"Meltem Eryildiz","doi":"10.1177/14644207241245335","DOIUrl":"https://doi.org/10.1177/14644207241245335","url":null,"abstract":"Bone defects pose a significant challenge, often exceeding natural healing capabilities. This study explores the potential of thermally induced radial gradient shape memory (RGSM) scaffolds for minimally invasive bone repair. Inspired by the natural porosity gradient of bone, these scaffolds feature a high-porosity inner zone that mimics cancellous bone and a low-porosity outer zone that resembles cortical bone. When the relationship between porosity and key properties was investigated, it was found that lower-porosity RGSM scaffolds exhibited higher compressive strength but experienced higher residual strain and lower shape recovery ratio compared to their higher-porosity counterparts. Despite this trade-off, the gradient design successfully mimicked the natural bone structure, potentially enhancing osseointegration and bone regeneration. These results demonstrate the feasibility of RGSM scaffolds for bone tissue engineering. This holds promise for advancing minimally invasive surgical techniques and improving the treatment of bone defects.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140576171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A sustainable and energy efficient approach for development of electrically conductive materials and their characterizations","authors":"Khalid Bashir, Dheeraj Gupta, Vivek Jain","doi":"10.1177/14644207241244600","DOIUrl":"https://doi.org/10.1177/14644207241244600","url":null,"abstract":"In this study, composite castings of electrically conductive materials were prepared using electromagnetic energy of frequency 2.45 GHz. Three separate sets of castings were produced inside the domestic microwave applicator cavity, with reinforced compositions of up to 15% in steps of 5% for each composite cast (copper (Cu) + 5% molybdenum (Mo), Cu + 10% Mo, and Cu + 15% Mo). A microwave radiation exposure time of 12 min was required for the complete melting of pure copper powder. However, the addition of Mo reinforcement caused a reduction in exposure time to 11.33 min (min) for the Cu-15% Mo composite cast. The formation of different phases was revealed by the X-ray diffraction analysis of the cast samples. Only a 0.92% copper oxide phase was detected in the pure copper cast samples. The composite cast samples exhibited peaks corresponding to Cu<jats:sub>64</jats:sub>O, Cu<jats:sub>6</jats:sub>Mo<jats:sub>5</jats:sub>O<jats:sub>18</jats:sub>, and MoO<jats:sub>2</jats:sub>. Microstructure analysis demonstrated that the grains grew in an equiaxed manner with a uniform dispersion of the reinforcements. The maximum microhardness achieved is 99.2 ± 4.99 Hv for Cu + 15% Mo which is 1.66 times better than microwave-cast copper sample.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140589102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review on the fused deposition modelling of fibre-reinforced polymer composites: Influence of process parameters, pre-processing and post processing techniques","authors":"C Naveen Kumar, Subramani Venkatesan","doi":"10.1177/14644207241243298","DOIUrl":"https://doi.org/10.1177/14644207241243298","url":null,"abstract":"Additive manufacturing is one of the latest manufacturing techniques that has gained universal recognition due to its material conservation nature. Fused deposition modelling (FDM) is an additive manufacturing technique that employs material extrusion to build components layer by layer. Thermoplastic polymers are used in FDM, and the components created are anisotropic and porous. Composite materials are used to improve the quality of the components. This article reviews recent research focused on the enhancement of the mechanical performance of composites produced by FDM. The influence of process parameters, type of fibre reinforcement (short and continuous fibres), pre-processing, process modification and post-processing techniques is analysed. Short fibres improved the mechanical performance of components, irrespective of the polymer matrix. Short fibres offered dimensional stability to the components, besides improving mechanical performance. Continuous fibres produce components with superior mechanical properties than short fibre composites. Continuous fibre reinforcement is the most effective reinforcement for fabricating structural and functional components in FDM. The importance of pre-processing, process modification and post-processing techniques in improving the mechanical characteristics of the components is discussed. In addition, this review identifies the significant challenges and perspectives for the future development of FDM technology in fibre-reinforced composites.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140589259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maisa Milanez Ávila Dias Maciel, Sandro Amico, Rui Miranda Guedes, Volnei Tita
{"title":"Evolution of variable angle tow composite structures: Data analysis and relevance of the theme","authors":"Maisa Milanez Ávila Dias Maciel, Sandro Amico, Rui Miranda Guedes, Volnei Tita","doi":"10.1177/14644207241240048","DOIUrl":"https://doi.org/10.1177/14644207241240048","url":null,"abstract":"Variable angle tow composites were developed to increase stiffness in notched laminates. Scientific advancements in manufacturing and fiber path optimization have since improved variable angle tow composites. This study uses bibliometric analysis to track the evolution of variable angle tow composites in the literature. Bibliometric analysis is a useful tool for measuring paper contributions and accurately assessing performance, aiding authors in the research process. This article presents a co-occurrence map of keyword frequency in research papers. Furthermore, an experimental section highlights manufacturing defects found in variable angle tow composites produced by filament winding, showing that manufacturing real structures in variable angle tow composites poses a significant challenge. Lastly, the perspectives of variable angle tow composite applications are discussed.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140589301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Homogenised strength criterion for natural fibre-reinforced composite","authors":"Himanshu Prajapati, Anurag Dixit, Abhishek Tevatia","doi":"10.1177/14644207241242382","DOIUrl":"https://doi.org/10.1177/14644207241242382","url":null,"abstract":"A representative model for multilayer natural fibre composite (NFC) plates is introduced to investigate its homogenised strength criterion. A three-layer NFC plate model is used to analyse the local stress–strain characteristics in multi-layered NFC. Finite element analysis (FEA) is performed on the representative volume element (RVE) under various boundary conditions to investigate stress and strain at macroscopic and microscopic levels. The explicit assessment of homogenised strength requires calculating stress tensors and equivalent stresses to determine parameter values. The precise specification of homogenised strength requirements assists in comprehending the material's behaviour under various loading conditions, which affects composite application design and optimisation techniques. The study examined the effect of fibre orientation angles on NFC's mechanical behaviour. The results demonstrate that flax fibres have comparatively higher stress levels than coir fibres. This study improves the understanding of natural fibre laminate composites’ macroscopic and microscopic behaviours, that is, the material's response under different loadings. The definition of homogenised strength criterion on NFC improves their design evaluations.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140589282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}