Melvin I. Pech-Mendoza, Alejandro E. Rodríguez-Sánchez, Héctor Plascencia-Mora
{"title":"基于神经网络的发泡聚苯乙烯泡沫压缩应力建模:关注珠粒尺寸参数","authors":"Melvin I. Pech-Mendoza, Alejandro E. Rodríguez-Sánchez, Héctor Plascencia-Mora","doi":"10.1177/14644207231224172","DOIUrl":null,"url":null,"abstract":"Expanded polystyrene is used in diverse applications, notably for protective and structural purposes. Its cushioning and mechanical strength excel under compressive loads, especially when optimally designed. A key factor influencing its compressive stress is the initial density, which plays a significant role in determining the material’s mechanical properties. This aspect is primarily determined by the bead size distribution. Although there is a vast body of literature on modeling the stress response of expanded polystyrene, there is limited emphasis on predictions that account for this factor, which is also relevant for the manufacturing of the material. Recent literature has emphasized the capability of artificial neural networks in predicting the compressive behaviors of expanded polystyrene, incorporating various factors. In this study, artificial neural network models were used to predict the compressive stress responses of polystyrene foams, with a focus on bead size distribution parameters. Specimens of two distinct initial densities were examined using micrographs to identify bead diameters and distributions, which were then used as model inputs. Compression tests on these specimens were conducted at two different rates. The collected data facilitated the development of predictive models for the material’s compressive behavior. The model predictions closely match experimental findings, with error metrics showing deviations <3% compared to the experimental data. This highlights the utility of artificial neural networks in modeling the compressive behavior of polystyrene foams, particularly when bead size and related parameters are considered.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"8 7","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural networks-based modeling of compressive stress in expanded polystyrene foams: A focus on bead size parameters\",\"authors\":\"Melvin I. Pech-Mendoza, Alejandro E. Rodríguez-Sánchez, Héctor Plascencia-Mora\",\"doi\":\"10.1177/14644207231224172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Expanded polystyrene is used in diverse applications, notably for protective and structural purposes. Its cushioning and mechanical strength excel under compressive loads, especially when optimally designed. A key factor influencing its compressive stress is the initial density, which plays a significant role in determining the material’s mechanical properties. This aspect is primarily determined by the bead size distribution. Although there is a vast body of literature on modeling the stress response of expanded polystyrene, there is limited emphasis on predictions that account for this factor, which is also relevant for the manufacturing of the material. Recent literature has emphasized the capability of artificial neural networks in predicting the compressive behaviors of expanded polystyrene, incorporating various factors. In this study, artificial neural network models were used to predict the compressive stress responses of polystyrene foams, with a focus on bead size distribution parameters. Specimens of two distinct initial densities were examined using micrographs to identify bead diameters and distributions, which were then used as model inputs. Compression tests on these specimens were conducted at two different rates. The collected data facilitated the development of predictive models for the material’s compressive behavior. The model predictions closely match experimental findings, with error metrics showing deviations <3% compared to the experimental data. This highlights the utility of artificial neural networks in modeling the compressive behavior of polystyrene foams, particularly when bead size and related parameters are considered.\",\"PeriodicalId\":20630,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications\",\"volume\":\"8 7\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14644207231224172\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207231224172","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Neural networks-based modeling of compressive stress in expanded polystyrene foams: A focus on bead size parameters
Expanded polystyrene is used in diverse applications, notably for protective and structural purposes. Its cushioning and mechanical strength excel under compressive loads, especially when optimally designed. A key factor influencing its compressive stress is the initial density, which plays a significant role in determining the material’s mechanical properties. This aspect is primarily determined by the bead size distribution. Although there is a vast body of literature on modeling the stress response of expanded polystyrene, there is limited emphasis on predictions that account for this factor, which is also relevant for the manufacturing of the material. Recent literature has emphasized the capability of artificial neural networks in predicting the compressive behaviors of expanded polystyrene, incorporating various factors. In this study, artificial neural network models were used to predict the compressive stress responses of polystyrene foams, with a focus on bead size distribution parameters. Specimens of two distinct initial densities were examined using micrographs to identify bead diameters and distributions, which were then used as model inputs. Compression tests on these specimens were conducted at two different rates. The collected data facilitated the development of predictive models for the material’s compressive behavior. The model predictions closely match experimental findings, with error metrics showing deviations <3% compared to the experimental data. This highlights the utility of artificial neural networks in modeling the compressive behavior of polystyrene foams, particularly when bead size and related parameters are considered.
期刊介绍:
The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers.
"The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK
This journal is a member of the Committee on Publication Ethics (COPE).